Skip to main content
Log in

Spherically Symmetric Space-Times in Generalized Hybrid Metric-Palatini Gravity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We discuss vacuum static, spherically symmetric asymptotically flat solutions of the generalized hybrid metric-Palatini theory of gravity (generalized HMPG) suggested by Böhmer and Tamanini, involving both a metric \(g_{\mu\nu}\) and an independent connection \(\hat{\Gamma}_{\mu\nu}^{\alpha}\); the gravitational field Lagrangian is an arbitrary function \(f(R,P)\) of two Ricci scalars, \(R\) obtained from \(g_{\mu\nu}\) and \(P\) obtained from \({\hat{\Gamma}}_{\mu\nu}^{\alpha}\). The theory admits a scalar-tensor representation with two scalars \(\phi\) and \(\xi\) and a potential \(V(\phi,\xi)\) whose form depends on \(f(R,P)\). Solutions are obtained in the Einstein frame and transferred back to the original Jordan frame for a proper interpretation. In the completely studied case \(V\equiv 0\), generic solutions contain naked singularities or describe traversable wormholes, and only some special cases represent black holes with extremal horizons. For \(V(\phi,\xi)\neq 0\), some examples of analytical solutions are obtained and shown to possess naked singularities. Even in the cases where the Einstein-frame metric \(g^{E}_{\mu\nu}\) is found analytically, the scalar field equations need a numerical study, and if \(g^{E}_{\mu\nu}\) contains a horizon, in the Jordan frame it turns to a singularity due to the corresponding conformal factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We safely omit the factor \(1/(2\varkappa^{2})\) at the gravitational part of the action since only vacuum configurations, where \(S_{m}=0\), will be considered.

  2. Unlike [4, 8, 17] etc., we are using the metric signature \((+--\,-)\), hence the plus sign before \((\partial\phi)^{2}=g^{\mu\nu}\phi_{,\mu}\phi_{,\nu}\) corresponds to a canonical field and a minus to a phantom field. The Ricci tensor is defined as \(R_{\mu\nu}=\partial_{\nu}\Gamma^{\alpha}_{\mu\alpha}-\ldots\), so that, for example, the scalar curvature is positive in de Sitter space-time. We also use the units in which \(c=G=1\), \(c\) being the speed of light and \(G\) the Newtonian gravitational constant.

  3. If we write the general static, spherically symmetric metric in the form (17) with an arbitrary radial coordinate \(u\), this metric is asymptotically flat at some \(u=u_{0}\) if [29]

    $$\textrm{e}^{\beta(u)}\equiv r(u)\mathop{\to}\limits_{u\to u_{0}}\infty,\quad|\gamma(u_{0})|<\infty,\quad\textrm{e}^{\beta-\alpha}|\beta^{\prime}|\mathop{\to}\limits_{u\to u_{0}}1.$$

    Comparing (17) with the Schwarzschild metric, it is easy to obtain a general expression for the Schwarzschild mass at \(u=u_{0}\) :

    $$m=\lim\limits_{u\to u_{0}}\textrm{e}^{\beta}\gamma^{\prime}/\beta^{\prime}=\lim\limits_{u\to u_{0}}r^{2}\gamma^{\prime}/r^{\prime}.$$

    In particular, for the (anti-)Fisher metric (20) we have \(m=h\) at \(u_{0}=0\).

References

  1. E.J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” Int. J. Mod. Phys. D 15, 1753 (2006); hep-th/0603057.

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Capozziello and M. De Laurentis, “Extended Theories of Gravity,” Phys. Rep. 509, 167 (2011); arXiv: 1108.6266.

    Article  ADS  MathSciNet  Google Scholar 

  3. S.-i. Nojiri and S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).

    Article  MathSciNet  Google Scholar 

  4. T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo, “Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration,” Phys. Rev. D 85, 084016 (2012); arXiv: 1110.1049.

    Article  ADS  Google Scholar 

  5. Salvatore Capozziello, Tiberiu Harko, Francisco S. N. Lobo, and Gonzalo J. Olmo, “Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration,” Int. J. Mod. Phys. D 22, 1342006 (2013); arXiv: 1305.3756.

    Article  ADS  Google Scholar 

  6. S. Capozziello, T. Harko, T.S. Koivisto, F. S. N. Lobo, and G. J. Olmo, “The virial theorem and the dark matter problem in hybrid metric-Palatini gravity,” JCAP 07, 024 (2013). arXiv: 1212.5817.

  7. S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo, “Cosmology of hybrid metric-Palatini f(X)-gravity,” JCAP 04, 011 (2013); arXiv: 1209.2895.

  8. S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo, “Hybrid metric-Palatini gravity,” Universe 1, 199 (2015); arXiv: 1508.04641.

  9. T. Harko and F. S. N. Lobo, Extensions of \(f(R)\) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory (Cambridge University Press, Cambridge, UK, 2018).

    Book  Google Scholar 

  10. A. Borowiec, S. Capozziello, M. De Laurentis, F. S. N. Lobo, A. Paliathanasis, M. Paolella, and A. Wojnar, “Invariant solutions and Noether symmetries in Hybrid Gravity,” Phys. Rev. D 91, 023517 (2015); arXiv: 1407.4313.

    Article  ADS  MathSciNet  Google Scholar 

  11. Ariel Edery and Yu. Nakayama, “Palatini formulation of pure \(R^{2}\) gravity yields Einstein gravity with no massless scalar,” Phys. Rev. D 99, 124018 (2019); arXiv: 1902.07876.

  12. Bogdan Dǎnilǎ, Tiberiu Harko, Francisco S. N. Lobo, and Man Kwong Mak, “Spherically symmetric static vacuum solutions in hybrid metric-Palatini gravity,” Phys. Rev. D 99, 064028 (2019); arXiv: 1811.02742.

  13. K. A. Bronnikov, “Spherically symmetric black holes and wormholes in hybrid metric-Palatini gravity,” Grav. Cosmol. 25, 331 (2019); arXiv: 1908.02012.

  14. K. A. Bronnikov, S. V. Bolokhov, M. V. Skvortsova, “Hybrid metric-Palatini gravity: black holes, wormholes, singularities and instabilities,” Grav. Cosmol. 26, 212–227 (2020); arXiv: 2006.00559.

  15. T. Harko, F. S. N. Lobo, and H. M. R. da Silva, “Cosmic stringlike objects in hybrid metric-Palatini gravity,” Phys. Rev. D 101, 124050 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  16. K. A. Bronnikov, S. V. Bolokhov, and M. V. Skvortsova, “Hybrid metric-Palatini gravity: Regular stringlike configurations,” Universe 6, 172 (2020); arXiv: 2009.03952.

  17. C. G. Böhmer and N. Tamanini, “Generalized hybrid metric-Palatini gravity,” Phys. Rev. D 87, 084031 (2013); arXiv:1302.2355.

    Article  ADS  Google Scholar 

  18. João L. Rosa, Sante Carloni, José P. S. Lemos, and Francisco S. N. Lobo, “Cosmological solutions in generalized hybrid metric-Palatini gravity,” Phys. Rev. D. 95, 124035 (2017); arXiv:1703.03335.

  19. João L. Rosa, Sante Carloni, and José P. S. Lemos, “Cosmological phase space of generalized hybrid metric-Palatini theories of gravity,” Phys. Rev. D 101, 104056 (2020); arXiv: 1908.07778.

  20. Paulo M. Sá, “Unified description of dark energy and dark matter within the generalized hybrid metric-Palatini theory of gravity,” Universe 6, 78 (2020); arXiv: 2002.09446.

  21. Flavio Bombacigno, Fabio Moretti, and Giovanni Montani, “Scalar modes in extended hybrid metric-Palatini gravity: weak field phenomenology,” arXiv: 1907.11949.

  22. João Luís Rosa, Francisco S.N. Lobo, and and Gonzalo J. Olmo, “Weak-field regime of the generalized hybrid metric-Palatini gravity,” arXiv: 2104.10890.

  23. João L. Rosa, José P. S. Lemos, and Francisco S. N. Lobo, “Stability of Kerr black holes in generalized hybrid metric-Palatini gravity,” Phys. Rev. D 101, 044055 (2020); arXiv: 2003.00090.

  24. João Luís Rosa, José P. S. Lemos, and Francisco S. N. Lobo, “Wormholes in generalized hybrid metric-Palatini gravity obeying the matter null energy condition everywhere,” Phys. Rev. D 98, 064054 (2018); arXiv: 1808.08975.

  25. Tiberiu Harko and Francisco S.N. Lobo, “Beyond Einstein’s General Relativity: Hybrid metric-Palatini gravity and curvature-matter couplings,” arXiv: 2007.15345.

  26. R. Wagoner, “Scalar-tensor theory and gravitational waves,” Phys. Rev. D 1, 3209 (1970).

    Article  ADS  Google Scholar 

  27. K. A. Bronnikov, S. V. Chervon, and S. V. Sushkov, “Wormholes supported by chiral fields,” Grav. Cosmol. 15 (3), 241–246 (2009); arXiv: 0905.3804.

  28. K. A. Bronnikov, “Scalar-tensor theory and scalar charge,” Acta Phys. Pol. B 4, 251 (1973).

    MathSciNet  Google Scholar 

  29. K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology, and Extra Dimensions (World Scientific: Singapore, 2013).

    MATH  Google Scholar 

  30. H. Ellis, “Ether flow through a drainhole—a particle model in general relativity,” J. Math. Phys. 14, 104 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  31. K. A. Bronnikov, J. C. Fabris, and A. Zhidenko, “On the stability of scalar-vacuum space-times,” Eur. Phys. J. C 71, 1791 (2011).

    Article  ADS  Google Scholar 

  32. K. A. Bronnikov, “Scalar fields as sources for wormholes and regular black holes,” Particles 2018, 1, 5 (2018); arXiv: 1802.00098.

  33. I. Z. Fisher, “Scalar mesostatic field with regard for gravitational effects,” Zh. Eksp. Teor. Fiz. 18, 636 (1948); gr-qc/9911008.

  34. P. Jordan, Schwerkraft und Weltall (Vieweg, Braunschweig, 1955).

    MATH  Google Scholar 

  35. N. M. Bocharova, K. A. Bronnikov, and V. N. Melnikov, “On an exact solution of the Einstein-scalar field equations,” Vestnik Mosk Univ., Fiz., Astron., No. 6, 706 (1970).

  36. J. D. Bekenstein, “Black holes with scalar charge,” Ann. Phys. (NY) 82, 535 (1974).

    Article  ADS  Google Scholar 

  37. K. A. Bronnikov, “Scalar vacuum structure in general relativity and alternative theories. Conformal continuations,” Acta Phys. Polon. B 32, 3571 (2001); gr-qc/0110125.

    ADS  MathSciNet  MATH  Google Scholar 

  38. K. A. Bronnikov, “Scalar-tensor gravity and conformal continuations,” J. Math. Phys. 43, 6096 (2002); gr-qc/0204001.

    Article  ADS  MathSciNet  Google Scholar 

  39. K. A. Bronnikov and A. A. Starobinsky, “No realistic wormholes from ghost-free scalar-tensor phantom dark energy,” Pis’ma v ZhETF 85, 3–8 (2007);

    Google Scholar 

  40. K. A. Bronnikov and A. A. Starobinsky, “No realistic wormholes from ghost-free scalar-tensor phantom dark energy,” Pis’ma v ZhETF 85, 3–8 (2007); JETP Lett. 85, 1–5 (2007); gr-qc/0612032.

  41. O. Bergmann and R. Leipnik, “Space-time structure of a static spherically symmetric scalar field,” Phys. Rev. 107, 1157 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  42. Carlos A. R. Herdeiro and Eugen Radu, “Asymptotically flat black holes with scalar hair: a review,” Int. J. Mod. Phys, D 24, 1542014 (2015); arXiv: 1504.08209.

  43. K. A. Bronnikov, “Spherically symmetric false vacuum: no-go theorems and global structure,” Phys. Rev. D 64, 064013 (2001); gr-qc/0104092.

    Article  ADS  Google Scholar 

  44. S. A. Adler and R. P. Pearson, “"No-hair" theorems for the Abelian Higgs and Goldstone models,” Phys. Rev. D 18, 2798 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  45. K. A. Bronnikov and G. N. Shikin, “Spherically symmetric scalar vacuum: no-go theorems, black holes and solitons,” Grav. Cosmol. 8, 107 (2002); gr-qc/0109027.

  46. K. A. Bronnikov and J. C. Fabris, “Regular phantom black holes,” Phys. Rev. Lett. 96, 251101 (2006); gr-qc/0511109.

    Article  ADS  MathSciNet  Google Scholar 

  47. K. A. Bronnikov, V.N. Melnikov, and H. Dehnen, “Regular black holes and black universes,” Gen. Rel. Grav. 39, 973–987 (2007); gr-qc/0611022.

    Article  ADS  MathSciNet  Google Scholar 

  48. K. A. Bronnikov and S. V. Sushkov, “Trapped ghosts: a new class of wormholes,” Class. Quantum Grav. 27, 095022 (2010); arXiv: 1001.3511.

  49. K. A. Bronnikov and A. V. Khodunov, “Scalar field and gravitational instability,” Gen. Rel. Grav. 11, 13 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  50. J. A. Gonzalez, F. S. Guzman, and O. Sarbach, “Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis,” Class. Quantum Grav. 26, 015010 (2009); arXiv: 0806.0608.

  51. K. A. Bronnikov, R. A. Konoplya, and A. Zhidenko, “Instabilities of wormholes and regular black holes supported by a phantom scalar field,” Phys. Rev. D 86, 024028 (2012); arXiv: 1205.2224.

    Article  ADS  Google Scholar 

  52. K. A. Bronnikov, C. P. Constantinidis, R. L. Evangelista, and J. C. Fabris, “Electrically charged cold black holes in scalar-tensor theories,” Int. J. Mod. Phys. D 8, 481 (1999); gr-qc/9902050

    Article  ADS  MathSciNet  Google Scholar 

  53. S. V. Bolokhov, K. A. Bronnikov, and M. V. Skvortsova, “Magnetic black universes and wormholes with a phantom scalar,” Class. Quantum Grav. 29, 245006 (2012); arXiv: 1208.4619.

  54. K. A. Bronnikov and P. A. Korolyov, “Magnetic wormholes and black universes with invisible ghosts,” Grav. Cosmol. 21, 157 (2015); arXiv: 1503.02956.

Download references

Funding

This publication was supported by the RUDN University Strategic Academic Leadership Program and by RFBR Project 19-02-00346. K.B. was also funded by the Ministry of Science and Higher Education of the Russian Federation, Project “Fundamental properties of elementary particles and cosmology” no. 0723-2020-0041.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. A. Bronnikov, S. V. Bolokhov or M. V. Skvortsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronnikov, K.A., Bolokhov, S.V. & Skvortsova, M.V. Spherically Symmetric Space-Times in Generalized Hybrid Metric-Palatini Gravity. Gravit. Cosmol. 27, 358–374 (2021). https://doi.org/10.1134/S0202289321040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289321040046

Navigation