Skip to main content
Log in

Nonzero Gravitational Force Exerted by a Spherical Shell on a Body Moving Inside It, and Cosmological Implications

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The shell theorem, proved by Newton in his Principia (1687), states that the net force exerted by a uniform spherical shell on a body located anywhere inside it is zero, as long as the force is proportional to the inverse square of the distance between the interacting bodies. This null result remains valid whenever the interaction depends only on the distance between the bodies, but not on their relative motion. In this work, I develop a direct closed-form evaluation of the integral of the elements of force to show that Weber-like interactions, which take into account the relative motion between the body and the shell, yield a nonzero force opposite to the acceleration of the body with respect to the shell, whatever be its position and velocity. For gravitational interactions, this nonzero force is relevant in cosmology since it can be identified with the force of inertia, as caused by the celestial sphere (i.e., the set of distant stars), which allows for a full mathematical implementation of Mach’s principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. By symmetry, when the body is at the center of the shell any radial force \(\vec{F}=F(r)\hat{r}\) will furnish a zero total force of the shell on the body. The nontrivial part of this theorem is that this force is zero anywhere inside the shell.

  2. The term ‘Mach’s principle’ was introduced by Schlick in 1915 [10], becoming popular after a paper by Einstein in 1918 [11].

  3. For simplicity and a better comparison to Newton’s gravitational force, we are using \(G\) here, but in Relational Mechanics this constant is replaced by \(H_{g}\), which is fixed by the mass and radius of the shell, as explained in Sec. 17.5.1 of Ref. [18].

  4. The simplest case \(\vec{C}=\vec{0}\) (i.e., the body at the center of the shell) has already been treated in [19].

  5. There, on p. 336 of [22], Ernst Mach (1838–1916) wrote: “I have remained to the present day the only one who insists upon referring the law of inertia to the Earth, and in the case of motions of great spatial and temporal extent, to the fixed stars.” This means that he identifies the frame of fixed stars as the correct material reference frame for application of Newton’s laws of motion, rather than the abstract absolute space adopted by Newton. Of course, Mach is using the name “fixed stars” refers to the visible stars of our Galaxy, since the distant galaxies were unknown before the works of Hubble in the 1920s [23, 24]. Today, a better inertial frame for studying the motions of our galaxy as a whole is the frame of the external galaxies or the frame in which the cosmic microwave background radiation (CMB) is isotropic. On pp. 279–284, Mach explicitly rejects Newton’s absolute space and motion because, for him, it does not make sense that an abstract thing can produce dynamical effects on material bodies. So much so that in the celebrated Newton’s bucket experiment he proposes that the centrifugal force is caused by the relative rotation between the water and the fixed stars, challenging his readers to “Try to fix Newton’s bucket and rotate the heaven of the fixed stars and then prove the absence of centrifugal forces.” He then concludes that “The principles of mechanics can, indeed, be so conceived that even for relative rotations centrifugal forces arise.”

  6. This goes against Newton’s original view. For Newton, dynamical effects can only be explained by a real acceleration with respect to absolute space [21]. So, the measured effects of Earth’s rotation (e.g., its flattening) would be evidences that it actually rotates once a day around its North-South axis with respect to the fixed stars, as these effects would not appear if the Earth were at rest relative to absolute space, with the distant stars rotating together once a day. These two configurations are kinematically equivalent, but in Newtonian mechanics they are not dynamically equivalent.

  7. The average density is estimated as \(\bar{\rho}\approx 8.5\times 10^{-27}\) kg/m\({}^{3}\), or about five H atoms/m\({}^{3}\) [45].

REFERENCES

  1. I. Newton, Philosophiae Naturalis Principia Mathematica (1687).

  2. I. Newton, The Principia: Mathematical Principles of Natural Philosophy, 3rd ed. (1726). The authoritative translation by I. B. Cohen and A. Whitman, preceeded by A guide to Newton’s Principia (UC Press, San Francisco, CA, 1999).

  3. R. Borghi, “Corrigendum: On Newton’s shell theorem,” Eur. J. Phys. 35, 028003 (2014).

    Article  MATH  Google Scholar 

  4. A. K. T. Assis and R. A. S. Karam, “The free fall of an apple: conceptual subtleties and implications for physics teaching,” Eur. J. Phys. 39, 035003 (2018).

    Article  Google Scholar 

  5. A. Einstein, “Zür allgemeinen Relativitätstheorie” [On general theory of relativity], Sitzber. Preuss. Akad. Wiss. (part 2), 778 (1915). See also the addendum on p. 801.

  6. A. Einstein, “Die Grundlage der allgemeinen Relätivitatstheorie” [The foundation of general theory of relativity], Ann. der Physik 49, 769 (1916).

    Article  ADS  MATH  Google Scholar 

  7. H. Thirring, “Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie” [On the effect of rotating distant masses in Einstein’s theory of gravitation], Phys. Z. 19, 33 (1918).

    MATH  Google Scholar 

  8. H. Thirring, “Berichtigung zu meiner Arbeit: Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie,” Phys. Zeitschrift 22, 29 (1921).

    ADS  MATH  Google Scholar 

  9. C. Brans, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev. 125, 2194 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Schlick, “Die philosophische Bedentung des Relativitätsprinzips” [The philosophical meaning of the principle of relativity], Z. für Philosophie und Philosophische Kritik 159, 129 (1915).

    Google Scholar 

  11. A. Einstein, “Prinzipielles zur allgemeinen Relativitätstheorie” [Principles of general relativity], Ann. der Physik 55, 241 (1918).

    Article  ADS  MATH  Google Scholar 

  12. W. de Sitter, “On Einstein’s theory of gravitation, and its astronomical consequences (third paper),” Mon. Not. Royal Astron. Soc. 78, 3 (1917).

    Article  ADS  Google Scholar 

  13. W. Weber, “Elektrodynamische Maassbestimmungen insbesondere über den Zusammenhang des elektrischen Grundgesetzes mit dem Gravitationsgesetze,” Wilhelm Weber’s Werke, Vol. IV: Galvanismus und Electrodynamik, part 2. Edited by H. Weber (Springer, Berlin, 1894), pp. 479–525.

  14. F. Tisserand, “Sur le mouvement des planètes autour du soleil, d’après la loi électrodynamique de Weber,” Comptes Rendues de l’Academie des Sciences de Paris 75, 760 (1872).

    MATH  Google Scholar 

  15. E. Schrödinger, “Die Erfüllbarkeit der Relativitatsforderung in der klassischen Mechanik,” Ann. Phys. (Leipzig) 77, 325 (1925) [For an English translation, see: J. B. Barbour, “The possibility of fulfillment of the relativity requirement in classical mechanics.” In J. B. Barbour and H. Pfister (orgs.), Mach’s Principle—From Newton’s Bucket to Quantum Gravity (Birkhäuser, Boston, 1995), pp. 147–158].

    Article  ADS  MATH  Google Scholar 

  16. A. K. T. Assis, “On Mach’s principle,” Found. Phys. Lett. 2, 301 (1989).

    Article  Google Scholar 

  17. A. K. T. Assis, Relational Mechanics (Apeiron, Montreal, Canada, 1999).

    Google Scholar 

  18. A. K. T. Assis, Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force (Apeiron, Montreal, 2014).

    Google Scholar 

  19. F. A. Palacios, R. B. Passaglia and F. M. S. Lima, “Força gravitacional exercida por uma casca esférica sobre um corpo acelerado dentro dela” [Gravitational force exerted by a spherical shell on a body accelerating inside it], Physicae Organum 2 (2), 1 (2016).

    Google Scholar 

  20. A. K. T. Assis, Weber’s Electrodynamics (Kluwer Acad. Publishers, Dordrecht, 1994), Chap. 3.

    Book  Google Scholar 

  21. F. M. S. Lima, R. B. Passaglia, and J. P. M. C. Chaib, “Revisiting Newton’svis inertiae.” Submitted to Am. J. Phys. (2020).

  22. E. Mach, The Science of Mechanics, 6th ed. (Open Court, La Salle, 1960).

    MATH  Google Scholar 

  23. E. Hubble, “Cepheids in spiral nebulae,” Popular Astronomy 33, 252 (1925).

    ADS  Google Scholar 

  24. E. Hubble, “Extragalactic nebulae,” Astroph. J. 64, 321 (1926).

    Article  ADS  Google Scholar 

  25. A. Einstein, “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie” [Cosmological considerations on the general theory of relativity], Sitzber. Preuss. Akad. Wiss. zu Berlin, pp. 142–152 (1917).

    MATH  Google Scholar 

  26. J. B. Barbour, Absolute or relative motion? (Cambridge Univ. Press, Cambridge, 1989), p. 6.

    MATH  Google Scholar 

  27. A. Einstein, “Dialog über Einwände gegen die Relativitätstheorie” [Dialogue on objections to the theory of relativity], Naturwissenschaften, 6-er Jahrgang 48, 697 (1918).

  28. M. Reinhardt, “Mach’s principle—a critical review,” Z. Naturforschung A 28, 529 (1973).

    Article  ADS  Google Scholar 

  29. D. J. Raine, “Mach’s principle and space-time structure,” Rep. Progress Phys. 44, 1151 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  30. D. W. Sciama, “On the origin of inertia,” Mon. Not. Royal Astron. Soc. 113, 34 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. A. Pais, Subtle is the Lord… (Oxford Univ. Press, Oxford, 1982), pp. 282–288.

    Google Scholar 

  32. A. Einstein, “Zum kosmologischen Problem der allgemeinen Relativitätstheorie” [On the cosmological problem of the general theory of relativity], Sitzber. Preuss. Akad. Wiss. zu Berlin, pp. 235–237 (1931).

    MATH  Google Scholar 

  33. R. v. Eötvös, in: Verhandlungen der 16 Allgemeinen Konferenz der Internationalen Erdmessung (Ed. G. Reiner, Berlin, 1910), p. 319.

  34. P. Touboul et al., “MICROSCOPE Mission: first results of a space test of equivalence principle,” Phys. Rev. Lett. 119, 231101 (2017).

    Article  ADS  Google Scholar 

  35. G. W. Leibnitz, Philosophical Essays (Hackett Publishing Company, Indianapolis, 1989), pp. 130–131. Edited and translated by R. Ariew and D. Garber.

  36. A. K. T. Assis, “On the absorption of gravity,” Apeiron 13, 3 (1992).

    Google Scholar 

  37. A. K. T. Assis, “On Hubble’s law of redshift, Olbers’ paradox and the cosmic background radiation,” Apeiron 12, 10 (1992).

    Google Scholar 

  38. G. Reber, “Intergalactic plasma,” IEEE Trans. Plasma Science PS-14, 678 (1986).

    Article  ADS  Google Scholar 

  39. H. C. Arp, C. R. Keys, and K. Rudnicki, Progress in New Cosmologies: Beyond the Big Bang (Plenum Press, New York, 1993).

    Book  Google Scholar 

  40. P. A. LaViolette, “Is the universe really expanding?,” Astroph. J. 301, 544 (1986).

    Article  ADS  Google Scholar 

  41. R. A. Monti, “Theory of relativity: a critical analysis,” Phys. Essays 9, 238 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Marmet, “A new mechanism to explain observations incompatible with the big bang,” Apeiron 9-10, 45 (1991).

    Google Scholar 

  43. N. Aghanim, et al. (Planck Collaboration), “Planck 2018 results. VI. Cosmological parameters,” arXiv: 1807.06209.

  44. E. Hubble, “A relation between distance and radial velocity among extragalactic nebulae,” Proc. National Acad. Sci. 15, 168 (1929).

    Article  ADS  MATH  Google Scholar 

  45. M. J. Rees, Just six numbers. The deep forces that shape the Universe (Basic Books, New York, 2000), Chap. 6 and its footnote 1.

  46. J. J. Condon, “Radio sources and cosmology.” In: Galactic and Extragalactic Radio Astronomy, (Ed. by G. L. Verschuur and K. I. Kellermann, 2nd ed., Springer, New York, 1988).

    Google Scholar 

  47. B. Vlahovic, “Spherical shell cosmological model and uniformity of cosmic microwave background radiation,” in Low Dimensional Physics and Gauge Principles, pp. 241–256 (2013).

  48. U. D. Göker, “A cosmological model based on Type Ia supernova discoveries at \(0.01<z\leq 1.55\) and dark energy evolution,” J. Scient. Research and Studies 1, 95 (2014).

    Google Scholar 

  49. T. Chen and Z. Chen, “The shell model of the Universe: a Universe generated from multiple Big Bangs,” J. Modern Phys. 7, 611 (2016).

    Article  ADS  Google Scholar 

  50. C. L. Bennett et al., “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results,” Astroph. J. Suppl. 208, 20 (2013).

    Article  Google Scholar 

  51. N. Aghanim et al., (Planck Collaboration), “Planck 2018 results. V. CMB power spectra and likelihoods,” arXiv: 1907.12875.

  52. S. Das, “Mach Principle and a new theory of gravitation,” arXiv: 1206.6755.

  53. M. Tajmar and A. K. T. Assis, “Influence of rotation on the weight of gyroscopes as an explanation for flyby anomalies,” J. Adv. Phys. 5, 176 (2016).

    Article  Google Scholar 

  54. A. K. T. Assis, “Changing the inertial mass of a charged particle,” J. Phys. Soc. Japan 62, 1418 (1993).

    Article  ADS  Google Scholar 

  55. V. F. Mikhailov, “The action of an electrostatic potential on the electron mass,” Ann. Fond. Louis de Broglie 24, 161 (1999).

    Google Scholar 

  56. V. F. Mikhailov, “Influence of an electrostatic potential on the inertial electron mass,” Ann. Fond. Louis de Broglie 26, 33 (2001).

    Google Scholar 

  57. V. F. Mikhailov, “Influence of a fieldless electrostatic potential on the inertial electron mass,” Ann. Fond. Louis de Broglie 28, 231 (2003).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks M. R. Javier for the hints on the cosmological implications of the nonzero force exerted on bodies accelerating inside the “universe-shell.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. S. Lima.

Appendices

Appendix A. CLOSED-FORM EXPRESSION FOR THE LAST INTEGRAL IN Eq. (10)

The last integral in Eq. (10) can be evaluated by first expanding it as

$$I_{4}\equiv\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}{\frac{\vec{a}\cdot\vec{R}}{r^{3}}\vec{R}\sin{\theta}d\theta d\varphi}$$
$${}=a_{x}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{x\frac{\sin{\theta}}{r^{3}}\vec{R}d\varphi d\theta}+a_{y}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{y\frac{\sin{\theta}}{r^{3}}\vec{R}d\varphi d\theta}$$
$${}+a_{z}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{z\frac{\sin{\theta}}{r^{3}}\vec{R}d\varphi d\theta}=a_{x}\hat{i}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{x^{2}\frac{\sin{\theta}}{r^{3}}d\varphi d\theta}$$
$${}+a_{y}\hat{j}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{y^{2}\frac{\sin{\theta}}{r^{3}}d\varphi d\theta}$$
$${}+a_{z}\hat{k}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{z^{2}\frac{\sin{\theta}}{r^{3}}d\varphi d\theta},$$
(A.1)

where the zero value of the integrals with crossed terms—i.e., \(xy\), \(yz\), and \(xz\)—follows from the zero value of the azimuthal integrals

$$\int\limits_{0}^{2\pi}{\cos{\varphi}d\varphi},\quad\int\limits_{0}^{2\pi}{\sin{\varphi}d\varphi},$$
$$\int\limits_{0}^{2\pi}{\sin{\varphi}\cos{\varphi}d\varphi}=\frac{1}{2}\int\limits_{0}^{2\pi}{\sin{(2\varphi)}d\varphi}.$$

The remaining integrals can be evaluated in a closed form in spherical coordinates as follows:

$$I_{4}=R^{2}\Bigg{(}a_{x}\hat{i}\int\limits_{0}^{\pi}{\frac{\sin^{3}{\theta}}{r^{3}}d\theta}\int\limits_{0}^{2\pi}{\cos^{2}{\varphi}d\varphi}$$
$${}+a_{y}\hat{j}\int\limits_{0}^{\pi}{\frac{\sin^{3}{\theta}}{r^{3}}d\theta}\int\limits_{0}^{2\pi}{\sin^{2}{\varphi}d\varphi}$$
$${}+2\pi a_{z}\hat{k}\int\limits_{0}^{\pi}{\cos^{2}{\theta}\frac{\sin{\theta}}{r^{3}}d\theta}\Bigg{)}=\pi R^{2}\left(a_{x}\hat{i}+a_{y}\hat{j}\right)$$
$${}\times\int\limits_{0}^{\pi}{\frac{\sin^{3}{\theta}}{r^{3}}d\theta}+2\pi R^{2}a_{z}\hat{k}I_{5},$$
(A.2)

where \(I_{5}\equiv\int\limits_{0}^{\pi}{\cos^{2}{\theta}\sin{\theta}/r^{3}d\theta}\). Since \(\sin^{3}{\theta}=(1-\cos^{2}{\theta})\sin{\theta}\),

$$\int\limits_{0}^{\pi}{\frac{\sin^{3}{\theta}}{r^{3}}}=\int\limits_{0}^{\pi}{\frac{\sin{\theta}}{r^{3}}d\theta}-\int\limits_{0}^{\pi}{\cos^{2}{\theta}\frac{\sin{\theta}}{r^{3}}d\theta}$$
$${}=\frac{2}{R\left(R^{2}-C^{2}\right)}-I_{5},$$
(A.3)

where the first integral is the same which was already evaluated in Eq. (8). Fortunately, \(I_{5}\) can be determined using the same substitution as was applied to Eq. (8), which results in

$$I_{5}=\frac{1}{4R^{3}C^{3}}\int\limits_{R-C}^{R+C}{\frac{\left(R^{2}+C^{2}-u^{2}\right)^{2}}{u^{2}}du}$$
$${}=\frac{2\left(R^{2}+2C^{2}\right)}{3R^{3}\left(R^{2}-C^{2}\right)}.$$
(A.4)

On back-substituting this closed-form expression for \(I_{5}\) into Eq. (A.3) and then into Eq. (A.2), Eq. (10) becomes

$$\vec{F}=\xi\frac{Gm\sigma R^{2}}{c^{2}}\left(I_{3}-I_{4}\right)$$
$${}=-\xi\frac{4\pi Gm\sigma R}{3c^{2}}\bigg{[}a_{x}\hat{i}+a_{y}\hat{j}$$
$${}+\frac{3C^{2}a\cos{\alpha}+a_{z}\left(R^{2}+2C^{2}\right)}{R^{2}-C^{2}}\hat{k}\bigg{]},$$
(A.5)

where the integral \(I_{3}\) was solved in Eq. (11).

Appendix A. CLOSED-FORM EXPRESSIONS FOR THE INTEGRALS IN Eq. (23)

The last integral in Eq. (17), as expanded in Eq. (23), can be solved analytically. To do that, we first write it as

$$R\hat{i}\Bigg{(}v_{0}^{2}C^{2}\cos^{2}{\beta}\int\limits_{0}^{\pi}{\frac{\sin^{2}{\theta}}{r^{5}}d\theta}\int\limits_{0}^{2\pi}{\cos{\varphi}d\varphi}$$
$${}+\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{\frac{v_{0x}^{2}x^{2}+v_{0y}^{2}y^{2}+v_{0z}^{2}z^{2}+2v_{0x}v_{0y}xy+2v_{0x}v_{0z}xz+2v_{0y}v_{0z}yz}{r^{5}}\sin^{2}{\theta}\cos{\varphi}d\varphi d\theta}$$
$${}+2v_{0}C\cos{\beta}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{\frac{v_{0x}x+v_{0y}y+v_{0z}z}{r^{5}}\sin^{2}{\theta}\cos{\varphi}d\varphi d\theta}\Bigg{)}$$
$${}+R\hat{j}\Bigg{(}v_{0}^{2}C^{2}\cos^{2}{\beta}\int\limits_{0}^{\pi}{\frac{\sin^{2}{\theta}}{r^{5}}d\theta}\int\limits_{0}^{2\pi}{\sin{\varphi}d\varphi}$$
$${}+\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{\frac{v_{0x}^{2}x^{2}+v_{0y}^{2}y^{2}+v_{0z}^{2}z^{2}+2v_{0x}v_{0y}xy+2v_{0x}v_{0z}xz+2v_{0y}v_{0z}yz}{r^{5}}\sin^{2}{\theta}\sin{\varphi}d\varphi d\theta}$$
$${}+2v_{0}C\cos{\beta}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{\frac{v_{0x}x+v_{0y}y+v_{0z}z}{r^{5}}\sin^{2}{\theta}\sin{\varphi}d\varphi d\theta}\Bigg{)}+R\hat{k}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}{f(\theta,\varphi)\cos{\theta}\sin{\theta}d\varphi d\theta}.$$
(B.1)

Clearly, the first terms of both the \(\hat{i}\) and \(\hat{j}\) components are zero, as well as all other azimuthal integrals with \(\sin{\varphi}\), \(\cos{\varphi}\), \(\sin{\varphi}\cos{\varphi}\), \(\sin^{2}{\varphi}\cos{\varphi}\), \(\sin{\varphi}\cos^{2}{\varphi}\), \(\sin^{3}{\varphi}\), or \(\cos^{3}{\varphi}\) in their integrands. Writing the remaining terms in spherical coordinates, one finds

$$\left(2\pi R^{3}v_{0x}v_{0z}\widetilde{I}_{5}+2\pi R^{2}Cv_{0}\cos{\beta}v_{0x}\widetilde{I}_{3}\right)\hat{i}$$
$${}+\left(2\pi R^{3}v_{0y}v_{0z}\widetilde{I}_{5}+2\pi R^{2}Cv_{0}\cos{\beta}v_{0y}\widetilde{I}_{3}\right)\hat{j}$$
$${}+\Big{[}2\pi RC^{2}v_{0}^{2}\cos^{2}{\beta}\widetilde{I}_{4}+\pi R^{3}\left(v_{0x}^{2}+v_{0y}^{2}\right)\widetilde{I}_{5}$$
$${}+2\pi R^{3}v_{0z}^{2}\left(\widetilde{I}_{4}-\widetilde{I}_{5}\right)$$
$${}+4\pi R^{2}Cv_{0}\cos{\beta}v_{0z}\left(\widetilde{I}_{2}-\widetilde{I}_{3}\right)\Big{]}\hat{k},$$
(B.2)

where

$$\widetilde{I}_{5}\equiv\int\limits_{0}^{\pi}{\frac{\sin^{3}{\theta}\cos{\theta}}{r^{5}}d\theta}=\frac{4}{3}\frac{C}{R^{4}\left(R^{2}-C^{2}\right)}$$
$${}=\frac{C}{R}\widetilde{I}_{3},$$
(B.3)

which has also been solved using the substitution \(u^{2}=R^{2}+C^{2}-2RC\cos{\theta}\). Since \(v_{0z}=v_{0}\cos{(\pi-\beta)}=-v_{0}\cos{\beta}\), both the \(\hat{i}\) and \(\hat{j}\) components of Eq. (B.2) simplify to zero, whereas the \(\hat{k}\) component simplifies to

$$\pi R^{3}\left(v_{0x}^{2}+v_{0y}^{2}\right)\widetilde{I}_{5}$$
$${}+4\pi RCv_{0z}^{2}\left[C\frac{\widetilde{I}_{4}}{2}+\frac{R^{2}}{C}\frac{\widetilde{I}_{4}-\widetilde{I}_{5}}{2}-R\left(\widetilde{I}_{2}-\widetilde{I}_{3}\right)\right]$$
$${}=\frac{4\pi}{3}\frac{C}{R}\frac{v_{0x}^{2}+v_{0y}^{2}+v_{0z}^{2}}{R^{2}-C^{2}}.$$
(B.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, F.M. Nonzero Gravitational Force Exerted by a Spherical Shell on a Body Moving Inside It, and Cosmological Implications. Gravit. Cosmol. 26, 387–398 (2020). https://doi.org/10.1134/S0202289320040088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320040088

Navigation