Skip to main content
Log in

Friedmann Dynamics Recovered from Compactified Einstein–Gauss–Bonnet Cosmology

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Cosmological dynamics is studied in Einstein–Gauss–Bonnet gravity with a perfect fluid source in arbitrary dimension. A systematic analysis is performed for the case that the theory does not admit maximally symmetric solutions. Considering two independent scale factors, namely, one for the 3D space and one for the extra-dimensional space, it is found that a regime exists where the scale factor of extra dimensions tends to a constant value via damped oscillations for not too negative pressure of the fluid, so that asymptotically the evolution of the (3 + 1)-dimensional Friedmann model with perfect fluid is recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Kaluza, Sit. Preuss. Akad.Wiss. K 1, 966 (1921).

    Google Scholar 

  2. O. Klein, Z. Phys. 37, 895 (1926).

    Article  ADS  Google Scholar 

  3. O. Klein, Nature 118, 516 (1926).

    Article  ADS  Google Scholar 

  4. C. Garraffo and G. Giribet, Mod. Phys. Lett. A 23, 1801 (2008).

    Article  ADS  Google Scholar 

  5. D. Lovelock, J.Math. Phys. 12, 498 (1971).

    Article  ADS  Google Scholar 

  6. R. Troncoso and J. Zanelli, Class.Quantum Grav. 17, 4451 (2000); hep-th/9907109.

    Article  ADS  Google Scholar 

  7. F. Canfora, A. Giacomini, and R. Troncoso, Phys. Rev. D 77, 024002 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Canfora, A. Giacomini, and S. Willison, Phys. Rev. D 76, 044021 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Canfora and A. Giacomini, Phys. Rev. D 78, 084034 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  10. F. Canfora and A. Giacomini, Phys. Rev. D 82, 024022 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Anabalon, F. Canfora, and A. Giacomini, J. Oliva, Phys. Rev. D 84, 084015 (2011).

    Article  ADS  Google Scholar 

  12. F. Canfora, A. Giacomini, and S. A. Pavluchenko, Phys. Rev. D 88, 064044 (2013).

    Article  ADS  Google Scholar 

  13. F. Canfora, A. Giacomini, and S. A. Pavluchenko, Gen. Rel. Grav. 46, 1805 (2014).

    Article  ADS  Google Scholar 

  14. F. Müller-Hoissen, Phys. Lett. B 163, 106 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Deruelle and L. Farin˜ a-Busto, Phys. Rev. D 41, 3696 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  16. F. Canfora, A. Giacomini, R. Troncoso and S. Willison, Phys. Rev. D 80, 044029 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Müller-Hoissen, Class. Quantum Grav. 3, 665 (1986).

    Article  ADS  Google Scholar 

  18. J. Demaret, H. Caprasse, A. Moussiaux, P. Tombal, and D. Papadopoulos, Phys. Rev. D 41, 1163 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  19. G. A. MenaMarugán, Phys. Rev. D 46, 4340 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Elizalde, A. N. Makarenko, V. V. Obukhov, K. E. Osetrin, and A. E. Filippov, Phys. Lett. B 644, 1 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  21. K. I. Maeda and N. Ohta, Phys. Rev. D 71, 063520 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  22. K. I. Maeda and N. Ohta, JHEP 1406, 095 (2014).

    Article  ADS  Google Scholar 

  23. T. Torii and H. Maeda, Phys. Rev. D 71, 124002 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Torii and H. Maeda, Phys. Rev. D 72, 064007 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Grain, A. Barrau, and P. Kanti, Phys. Rev. D 72, 104016 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  26. R. G. Cai and N. Ohta, Phys. Rev. D 74, 064001 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Maeda, Phys. Rev. D 73, 104004 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Nozawa and H. Maeda, Class. Quantum Grav. 23, 1779 (2006).

    Article  ADS  Google Scholar 

  29. H. Maeda, Class. Quantum Grav. 23, 2155 (2006).

    Article  ADS  Google Scholar 

  30. M. H. Dehghani and N. Farhangkhah, Phys. Rev. D 78, 064015 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  31. H. Ishihara, Phys. Lett. B 179, 217 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  32. N. Deruelle, Nucl. Phys. B 327, 253 (1989).

    Article  ADS  Google Scholar 

  33. S. A. Pavluchenko and A. V. Toporensky, Mod. Phys. Lett. A 24, 513 (2009).

    Article  ADS  Google Scholar 

  34. S.A. Pavluchenko, Phys. Rev. D 80, 107501 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  35. S.A. Pavluchenko, Phys. Rev. D 82, 104021 (2010).

    Article  ADS  Google Scholar 

  36. V. Ivashchuk, Grav. Cosmol. 16, 118 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  37. V. Ivashchuk, Int. J. Geom.Meth. Mod. Phys. 7, 797 (2010); arXiv: 0910.3426.

    Article  Google Scholar 

  38. I. V. Kirnos, A. N. Makarenko, S. A. Pavluchenko, and A. V. Toporensky, Gen. Rel. Grav. 42, 2633 (2010).

    Article  ADS  Google Scholar 

  39. S. A. Pavluchenko and A. V. Toporensky, Grav. Cosmol. 20, 127 (2014); arXiv: 1212.1386.

    Article  ADS  Google Scholar 

  40. I. V. Kirnos, S. A. Pavluchenko, and A. V. Toporensky, Grav. Cosmol. 16, 274 (2010); arXiv: 1002.4488.

    Article  ADS  Google Scholar 

  41. D. Chirkov, S. Pavluchenko, and A. Toporensky, Mod. Phys. Lett. A 29, 1450093 (2014); arXiv: 1401.2962.

    Article  ADS  Google Scholar 

  42. D. Chirkov, S. Pavluchenko, and A. Toporensky, Gen. Rel. Grav. 46, 1799 (2014); arXiv: 1403.4625.

    Article  ADS  Google Scholar 

  43. D. Chirkov, S. Pavluchenko, and A. Toporensky, Gen. Rel. Grav. 47, 137 (2015); arXiv: 1501.04360.

    Article  ADS  Google Scholar 

  44. S.A. Pavluchenko, Phys. Rev. D 92, 104017 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  45. K. K. Ernazarov, V. D. Ivashchuk, and A. A. Kobtsev, Grav. Cosmol. 22, 245 (2016).

    Article  ADS  Google Scholar 

  46. V. D. Ivashchuk, Eur. Phys. J. C 76, 431 (2016).

    Article  ADS  Google Scholar 

  47. D. Castor and C. Senturk, Class. Quantum Grav. 32, 18 (2015).

    Google Scholar 

  48. S.A. Pavluchenko, Phys. Rev. D 94, 024046 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  49. S.A. Pavluchenko, Phys. Rev. D 94, 084019 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  50. S. A. Pavluchenko, Eur. Phys. J. C 77, 503 (2017).

    Article  ADS  Google Scholar 

  51. J. A. Wolf, Spaces of Constant Curvature (4th edition, Perish, Wilmington, Delaware, USA, 1984), p.69.

    Google Scholar 

  52. G. ’t Hooft, Nucl. Phys. B 75, 461 (1974).

    Article  ADS  Google Scholar 

  53. G. Veneziano, Nucl. Phys. B 117, 519 (1976).

    Article  ADS  Google Scholar 

  54. Y. Makeenko, Large-N Gauge Theories Lectures at the 1999 NATO-ASI on Quantum Geometry (Akureyri, Iceland); hep-th/0001047.

  55. A. V. Manohar, Large N QCD (Les Houches Lectures, 1997); hep-ph/9802419.

    Google Scholar 

  56. F. Canfora, Nucl. Phys. B 731, 389 (2005)

    Article  ADS  Google Scholar 

  57. F. Canfora, Phys. Rev. D 74, 064020 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  58. F. Canfora, A. Giacomini and A. R. Zerwekh, Phys. Rev. D 80, 084039 (2009); arXiv:0908.2077.

    Article  ADS  MathSciNet  Google Scholar 

  59. E. E. Bukzhalev, M. M. Ivanov, and A. V. Toporensky, Class. Quantum Grav. 31, 045017 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Canfora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canfora, F., Giacomini, A., Pavluchenko, S.A. et al. Friedmann Dynamics Recovered from Compactified Einstein–Gauss–Bonnet Cosmology. Gravit. Cosmol. 24, 28–38 (2018). https://doi.org/10.1134/S0202289318010048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289318010048

Navigation