Skip to main content
Log in

Unfinished history and paradoxes of quantum potential. I. Non-relativistic origin, history and paradoxes

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

This is the first of two related papers analyzing and explaining the origin, manifestations and parodoxical features of the quantum potential (QP) from the non-relativistic and relativistic points of view. The QP arises in the quantum Hamiltonian under various procedures of quantization of natural systems, i.e., those whose Hamilton functions are positive-definite quadratic forms in momenta with coefficients depending on the coordinates in (n-dimensional) configurational space V n thus endowed with a Riemannian structure. The result of quantization may be considered as quantum mechanics (QM) of a particle in V n in the normal Gaussian coordinate system in the globally static space-time V 1,n . Contradiction of the QP to the General Covariance and Equivalence principles is discussed.

It is found that actually the historically first Hilbert space-based quantization by E. Schrödinger (1926), after revision in the modern framework of QM, also leads to a QP in the form that B. DeWitt found 26 years later. Efforts to avoid the QP or to reduce its drawbacks are discussed. The general conclusion is that some form of QP and a violation of the principles of general relativity which it induces are inevitable in the non-relativistic quantum Hamiltonian. It is also shown that Feynman (path-integral) quantization of natural systems singles out two versions of the QP, which both determine two bi-scalar (independent of a choice of coordinates) propagators fixing two different algorithms of path integral calculation.

The accompanying paper under the same general title and the subtitle “The Relativistic Point of View” (published in the same issue of the journal and referred to as Paper II) considers a relation of the nonrelativistic QP to the quantum theory of a scalar field non-minimally coupled to the curved space-time metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Gotay, Int. Theor. Phys. (1980) 19, 139.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. J. Gotay, Obstructions to quantization, in The Juan Simo Memorial Volume, eds. J. E. Marsden and S. Wiggins (Springer, New York, 1999); mathph/9809011.

  3. V. I. Arnold and A. B. Givental, Symplectic Geometry. In: Dynamical Systems IV, Encyclopedia of Mathematical Sciences 4 (Springer-Verlag, 1985).

  4. E. Schrödinger, Ann. d. Physik 79, 734 (1926).

    Article  MATH  Google Scholar 

  5. E. Schrödinger, Ann. d. Physik 79, 361 (1926); ibid. 79, 489, 734; ibid. 80, 437; ibid 81, 109 (1926).

    Article  MATH  Google Scholar 

  6. D. Sternheimer, J. Math. Sci. 141(4), 1494 (2007).

    Article  MathSciNet  Google Scholar 

  7. B. S. DeWitt, Phys. Rev. 85, 653 (1952).

    Article  MathSciNet  ADS  Google Scholar 

  8. B. S. DeWitt, Rev.Mod. Phys. 29, 377 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. W. Pauli, Feldquantisierung. Lecture Notes (1950–1951), Zurich.

    Google Scholar 

  10. J. Śniatycki, Geometric Quantization and Quantum Mechanics (Springer, New York, Heidelberg, Berlin, 1980).

    Book  MATH  Google Scholar 

  11. D. Kalinin, Rep. Math. Phys. 43, 147 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1956).

    Google Scholar 

  13. D. W. McLaughlin and L. S. Schulman, J. Math. Phys. 12, 2520 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  14. K. S. Cheng, J.Math. Phys. 13, 1723 (1972).

    Article  ADS  Google Scholar 

  15. J. S. Dowker, J. Phys. A: Math. Gen. 7, 125 (1974).

    Article  Google Scholar 

  16. J. C. D’Olivo and M. Torres, J. Phys. A: Math. Gen. 21, 3355 (1989).

    Article  MathSciNet  Google Scholar 

  17. F. A. Berezin and M. A. Shubin, The Schrödinger Equation (Kluwer Acad. Publ., Dodrecht, 1991).

    Book  MATH  Google Scholar 

  18. H. Kleinert, Path Integrals in QuantumMechanics, Statistics, Polymer Physics, and Financial Markets (World Scientific, Singapore, 2002).

    Google Scholar 

  19. E. A. Tagirov, Int. J. Theor. Phys. 42 465 (2003); grqc/0212076.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. A. Tagirov, Class. Quantum Grav. 16, 2165 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S. Weinberg, Gravitation and Cosmology (John Wiley and Sons, N.Y., 1973), Ch. 3, Sec. 1.

    Google Scholar 

  22. W. Pauli, Wellenmechanik (Handbuch der Physik, 1933, Band 24, I, p. 120).

    Google Scholar 

  23. M. Jammer, The Conceptual Development of Quantum Mechanics (McGraw-Hill, N.Y., 1960).

    Google Scholar 

  24. G. A. Vilkovysky, Theor. Math. Phys. 8, 889 (1971).

    Article  Google Scholar 

  25. B. Podolsky, Phys. Rev. 32, 812 (1928).

    Article  ADS  MATH  Google Scholar 

  26. M. B. Mensky, Theor. Math. Phys. 93(2) (1992).

    Google Scholar 

  27. C. Rovelli, Int. J. Theor. Phys. 35, 1637 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Sudbury, Quantum Mechanics and the Particles of Nature (Cambridge University Press, 1986).

    Google Scholar 

  29. J. L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960).

    MATH  Google Scholar 

  30. M. B. Mensky, Helv. Phys. Acta 69, 301 (1996).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Tagirov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagirov, E.A. Unfinished history and paradoxes of quantum potential. I. Non-relativistic origin, history and paradoxes. Gravit. Cosmol. 19, 1–9 (2013). https://doi.org/10.1134/S020228931301009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228931301009X

Keywords

Navigation