Skip to main content
Log in

Assessing the Effectiveness of the Hydrothermal Carbonization Method to Produce Bio-Coal from Wet Organic Wastes

  • STEAM BOILERS, POWER PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The study is devoted to the assessment of the thermodynamic efficiency of the hydrothermal carbonization (HTC) method to produce bio-coal from wet organic waste (biomass). The HTC method is a process of thermochemical conversion of biomass into solid biofuel (bio-coal) as a result of its heating up to 150–280°С in the presence of water. The competitive advantages of the HTC method and the properties of bio-coal produced by this method from various organic waste are analyzed. The energy consumption values for implementation of the HTC process and the conventional torrefaction method are compared. It is demonstrated that the energy consumption in the production of bio-coal by the HTC method is several times lower than in the torrefaction process since water heated at a high pressure remains a liquid. This, in turn, offers a high potential for recovery of thermal energy (approximately 87%) in the HTC process. The heating value of the produce bio-coal is as high as 27 MJ/kg, which is comparable with that of commercial power coals. An analysis of the properties of biochar produced in the HTC process suggests that, in principle, it may be burned at coal-fired power stations together with conventional coal (if proper gas treatment equipment is available). The HTC method can be used for pretreatment of water-rich organic wastes and biomass to produce a quality fuel and a water solution that can be used as a base for production of fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. S. Vlaskin, “Municipal solid waste as an alternative energy source,” in Proc. Inst. Mech. Eng., Part A 232, 961–970 (2018). https://doi.org/10.1177/0957650918762023

    Article  Google Scholar 

  2. M. S. Vlaskin and G. N. Vladimirov, “Hydrothermal carbonization of organic components from municipal solid waste,” Theor. Found. Chem. Eng. 52, 996–1003 (2018). https://doi.org/10.1134/S0040579518050421

    Article  Google Scholar 

  3. D. Gupta, S. M. Mahajani, and A. Garg, “Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes,” Bioresour. Technol. 285, 121329 (2019). https://doi.org/10.1016/j.biortech.2019.121329

    Article  Google Scholar 

  4. J. A. Libra, K. S. Ro, C. Kammann, A. Funke, N. D. Berge, Y. Neubauer, M.-M. Titirici, C. Fühner, O. Bens, J. Kern, and K.-H. Emmerich, “Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis,” Biofuels 2, 71–106 (2011). https://doi.org/10.4155/bfs.10.81

    Article  Google Scholar 

  5. A. Jain, C. Xu, S. Jayaraman, R. Balasubramanian, J. Y. Lee, and M. P. Srinivasan, “Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications,” Microporous Mesoporous Mater. 218, 55–61 (2015). https://doi.org/10.1016/j.micromeso.2015.06.041

    Article  Google Scholar 

  6. M. Heidari, A. Dutta, B. Acharya, and S. Mahmud, “A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion,” J. Energy Inst. 92, 1779–1799 (2018). https://doi.org/10.1016/j.joei.2018.12.003

    Article  Google Scholar 

  7. N. Huang, P. Zhao, S. Ghosh, and A. Fedyukhin, “Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production,” Appl. Energy 240, 882–892 (2019). https://doi.org/10.1016/j.apenergy.2019.02.050

    Article  Google Scholar 

  8. B. G. Hermann, L. Debeer, B. De Wilde, K. Blok, and M. K. Patel, “To compost or not to compost: Carbon and energy footprints of biodegradable materials’ waste treatment,” Polym. Degrad. Stab. 96, 1159–1171 (2011). https://doi.org/10.1016/j.polymdegradstab.2010.12.026

    Article  Google Scholar 

  9. W. E. Eleazer, W. S. Odle, Y. S. Wang, and M. A. Barlaz, “Biodegradability of municipal solid waste components in laboratory-scale landfills,” Environ. Sci. Technol. 31, 911–917 (1997). https://doi.org/10.1021/es9606788

    Article  Google Scholar 

  10. M. A. Barlaz, “Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills,” Global Biogeochem. Cycles 12, 373–380 (1998). https://doi.org/10.1029/98GB00350

    Article  Google Scholar 

  11. A. N. Tugov, “Experience of using municipal solid waste in the energy industry (an overview),” Therm. Eng. 62, 853–861 (2015). https://doi.org/10.1134/S0040601515120125

    Article  Google Scholar 

  12. European Standard. Solid Biofuels — Determination of Calorific Value (2009).

  13. V. R. Tanner, “Die Entwicklung der Von-Roll-Müllverbrennungsanlagen (The development of the Von-Roll incinerators),” Schweiz. Bauztg. 83, 251–260 (1965).

    Google Scholar 

  14. D. Komilis, K. Kissas, and A. Symeonidis, “Effect of organic matter and moisture on the calorific value of solid wastes: An update of the Tanner diagram,” Waste Manage. (Oxford, U. K.) 34, 249–255 (2014). https://doi.org/10.1016/j.wasman.2013.09.023

    Article  Google Scholar 

  15. Y. Kostyukevich, M. Vlaskin, L. Borisova, A. Zherebker, I. Perminova, A. Kononikhin, I. Popov, and E. Nikolaev, “Investigation of bio-oil produced by hydrothermal liquefaction of food waste using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry,” Eur. J. Mass Spectrom. 24, 116–123 (2018). https://doi.org/10.1177/1469066717737904

    Article  Google Scholar 

  16. M. S. Vlaskin, Yu. I. Kostyukevich, A. V. Grigorenko, E. A. Kiseleva, G. N. Vladimirov, P. V. Yakovlev, and E. N. Nikolaev, “Hydrothermal treatment of organic waste,” Russ. J. Appl. Chem. 90, 1285–1292 (2017).

    Article  Google Scholar 

  17. L.-P. Xie, T. Li, J.-D. Gao, X.-N. Fei, X. Wu, and Y.‑G. Jiang, “Effect of moisture content in sewage sludge on air gasification,” J. Fuel Chem. Technol. (Beijing, China) 38, 615–620 (2010). https://doi.org/10.1016/S1872-5813(10)60048-5

    Article  Google Scholar 

  18. Y. Xin, D. Wang, X. Q. Li, Q. Yuan, and H. Cao, “Influence of moisture content on cattle manure char properties and its potential for hydrogen rich gas production,” J. Anal. Appl. Pyrolysis 130, 224–232 (2018). https://doi.org/10.1016/j.jaap.2018.01.005

    Article  Google Scholar 

  19. M. López, M. Soliva, F. X. Martínez-Farré, A. Bonmatí, and O. Huerta-Pujol, “An assessment of the characteristics of yard trimmings and recirculated yard trimmings used in biowaste composting,” Bioresour. Technol. 101, 1399–1405 (2010). https://doi.org/10.1016/j.biortech.2009.09.031

    Article  Google Scholar 

  20. E. Ya. Tomson, Ya. A. Dolatsis, Yu. S. Khrol, and D. P. Turlais, “Calculation of the effect of moisture on the calorific value of wood,” in Proc. 4th Russ. Nats. Conf. on Heat Transfer, Moscow, Oct. 23–27,2006 (Mosk. Energ. Inst., Moscow, 2006), Vol. 3, pp. 324–326. http://www.rnkt.ru/year/2006/lib/3-324.pdf

  21. H. Zhou, Y. Long, A. Meng, Q. Li, and Y. Zhang, “Classification of municipal solid waste components for thermal conversion in waste-to-energy research,” Fuel 145, 151–157 (2015). https://doi.org/10.1016/j.fuel.2014.12.015

    Article  Google Scholar 

  22. M. S. Vlaskin, N. I. Chernova, S. V. Kiseleva, O. S. Popel’, and A. Z. Zhuk, “Hydrothermal liquefaction of microalgae to produce biofuels: State of the art and future prospects,” Therm. Eng. 64, 627–636 (2017). https://doi.org/10.1134/S0040601517090105

    Article  Google Scholar 

  23. R. Pentananunt, A. N. M. M. Rahman, and S. C. Bhattacharya, “Upgrading of biomass by means of torrefaction,” Energy 15, 1175–1179 (1990). https://doi.org/10.1016/0360-5442(90)90109-F

    Article  Google Scholar 

  24. R. E. Guedes, A. S. Luna, and A. R. Torres, “Operating parameters for bio-oil production in biomass pyrolysis: A review,” J. Anal. Appl. Pyrolysis 129, 134–149 (2018). https://doi.org/10.1016/j.jaap.2017.11.019

    Article  Google Scholar 

  25. S. K. Sansaniwal, K. Pal, M. A. Rosen, and S. K. Tyagi, “Recent advances in the development of biomass gasification technology: A comprehensive review,” Renewable Sustainable Energy Rev. 72, 363–384 (2017). https://doi.org/10.1016/j.rser.2017.01.038

    Article  Google Scholar 

  26. Y. I. Kostyukevich, M. S. Vlaskin, A. Zherebker, A. V. Grigorenko, L. Borisova, and E. N. Nikolaev, “High resolution mass spectrometry study of the bio-oil samples produced by thermal liquefaction of microalgae in different solvents,” J. Am. Soc. Mass Spectrom. 30, 605–614 (2019). https://doi.org/10.1007/s13361-018-02128-9

    Article  Google Scholar 

  27. K. McGaughy and M. T. Reza, “Recovery of macro and micro-nutrients by hydrothermal carbonization of septage,” J. Agric. Food Chem. 66, 1854–1862 (2018). https://doi.org/10.1021/acs.jafc.7b05667

    Article  Google Scholar 

  28. I. Idowu, L. Li, J. R. V. Flora, P. J. Pellechia, S. A. Darko, K. S. Ro, and N. D. Berge, “Hydrothermal carbonization of food waste for nutrient recovery and reuse,” Waste Manage (Oxford, U. K.) 69, 480–491 (2017). https://doi.org/10.1016/j.wasman.2017.08.051

    Article  Google Scholar 

  29. I.-H. Hwang, H. Aoyama, T. Matsuto, T. Nakagishi, and T. Matsuo, “Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water,” Waste Manage. (Oxford, U. K.) 32, 410–416 (2012). https://doi.org/10.1016/j.wasman.2011.10.006

    Article  Google Scholar 

  30. A. N. Tugov, “Prospects for the use of municipal solid wastes as secondary energy resources in Russia,” Therm. Eng. 60, 663–668 (2013). https://doi.org/10.1134/S0040601513090139

    Article  Google Scholar 

  31. L. Lombardi, E. Carnevale, and A. Corti, “A review of technologies and performances of thermal treatment systems for energy recovery from waste,” Waste Manage. (Oxford, U. K.) 37, 26–44 (2015). https://doi.org/10.1016/j.wasman.2014.11.010

    Article  Google Scholar 

  32. L. Lu, T. Namioka, and K. Yoshikawa, “Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes,” Appl. Energy 88, 3659–3664 (2011). https://doi.org/10.1016/j.apenergy.2011.04.022

    Article  Google Scholar 

  33. Y. Lin, X. Ma, X. Peng, and Z. Yu, “A mechanism study on hydrothermal carbonization of waste textile,” Energy Fuels 30, 7746–7754 (2016). https://doi.org/10.1021/acs.energyfuels.6b01365

    Article  Google Scholar 

  34. Y. Kostyukevich, M. Vlaskin, G. Vladimirov, A. Zherebker, A. Kononikhin, I. Popov, and E. Nikolaev, “The investigation of the bio-oil produced by hydrothermal liquefaction of Spirulina platensis using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry,” Eur. J. Mass Spectrom. 23, 83–88 (2017). https://doi.org/10.1177/1469066717702648

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian president’s grant no. MK-6302.2018.8, the Russian Foundation for Basic Research (grant no. 18-58-45009), and the Department of Science and Technologies of India (grant no. INT/RUS/RFBR/347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Vlaskin.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlaskin, M.S., Kumar, V. Assessing the Effectiveness of the Hydrothermal Carbonization Method to Produce Bio-Coal from Wet Organic Wastes. Therm. Eng. 67, 441–450 (2020). https://doi.org/10.1134/S0040601520070071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601520070071

Keywords:

Navigation