Skip to main content
Log in

Analysis of Extraction Separation in a Cascade of Mixing-Settling Extractors in a Recirculation Liquid-Liquid Chromatography Mode

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Previously, a method for increasing the efficiency of extraction separation of liquid mixtures has been proposed, in which a solution of a mixture of components is introduced as a series of pulse injections in a cascade of mixing-settling extractors operating in the eluent chromatography mode. The present study is further development of this method as applied to separation in a cascade of mixing-settling extractors operating in a recirculation chromatography mode. A mathematical model was developed, and periodic and continuous processes of extraction separation were analyzed for conditions with a mixture of components loaded into a cascade of mixing-settling extractors in the form of a series of successive pulse injections separated by short time intervals. Experiments were performed on a cascade of mixing-settling extractors, which confirmed that the model is reliable. It was shown on some examples that the serial method of loading the solution into a closed circuit of extractors significantly increases the efficiency of separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kostanyan, A.E., Milevsky, N.A., and Voshkin, A.A., Analysis of the processes of extraction–chromatographic separation in a cascade of mixing–settling extractors, Theor. Found. Chem. Eng., 2021, vol. 55, pp. 862–869. https://doi.org/10.1134/S0040579521050249

    Article  CAS  Google Scholar 

  2. Kostanyan, A.E., Ivanov, V.K., and Voshkin, A.A., Theoretical analysis of periodic processes of extraction-chromatographic separation in a closed cascade of apparatuses, Dokl. Chem., 2021, vol. 499, pp. 171–175. https://doi.org/10.1134/S0012500821080012

    Article  CAS  Google Scholar 

  3. Guilois-Dubois, S., Guyot, S., and Poupard, P., Preparative isolation of apple flavan-3-ols monomers and oligomers using pH-zone-refining centrifugal partition chromatography combined with reversed-phase liquid chromatography, J. Chromatogr. A, 2021, vol. 1653, Article 462382. https://doi.org/10.1016/j.chroma.2021.462382

    Article  CAS  PubMed  Google Scholar 

  4. Li, H., Zhang, F., Jin, Q., and Zhu, T., Preparative separation and purification of Cyclosporin D from fungus Hypoxylon Spp. by improved closed-loop recycling counter-current chromatography, J. Chromatogr. A, 2021, vol. 1649, Article 462221. https://doi.org/10.1016/j.chroma.2021.462221

    Article  CAS  PubMed  Google Scholar 

  5. He, J.M., Huang, J., Wu, W.L., and Mu, Q., Unlimited recycling counter-current chromatography for the preparative separation of natural products: Naphthaquinones as examples, J. Chromatogr. A, 2020, vol. 1626, Article 461368. https://doi.org/10.1016/j.chroma.2020.461368

    Article  CAS  PubMed  Google Scholar 

  6. Yuan, Y., He, X., Wang, T., Zhang, X.X., Li, Z., Xu, X., Zhang, W., Yan, X., Li, S., and He, S., Efficient preparation of Bafilomycin A1 from marine streptomyces lohii fermentation using three-phase extraction and high-speed counter-current chromatography, Mar. Drugs, 2020, vol. 18, p. 332. https://doi.org/10.3390/md18060332

    Article  CAS  PubMed Central  Google Scholar 

  7. Kostanyan, A. and Martynova, M., Modeling of two semi-continuous methods in liquid–liquid chromatography: Comparing conventional and closed-loop recycling modes, J. Chromatogr. A, 2020, vol. 1614, Article 460735. https://doi.org/10.1016/j.chroma.2019.460735

    Article  CAS  PubMed  Google Scholar 

  8. Kostanyan, A.E. and Belova, V.V., Theoretical study of industrial scale closed-loop recycling counter-current chromatography separations, J. Chromatogr. A, 2020, vol. 1633, Article 461630. https://doi.org/10.1016/j.chroma.2020.461630

    Article  CAS  PubMed  Google Scholar 

  9. Kostanyan, A.E., Galieva, Z.N., Semenov, A.A., and Aldushkin, A.V., Chromatographic behavior of six lanthanides on a centrifugal mixer–settler extractor cascade, J. Chromatogr. A, 2020, vol. 1634, Article 461686. https://doi.org/10.1016/j.chroma.2020.461686

    Article  CAS  PubMed  Google Scholar 

  10. Kostanyan, A.A., Voshkin, A.A., and Belova, V.V., Analytical, preparative, and industrial-scale separation of substances by methods of countercurrent liquid–liquid chromatography, Molecules, 2020, vol. 25, p. 6020.

    Article  CAS  Google Scholar 

  11. Jerz, G. and Winterhalter, P., The 10th International Conference on Countercurrent Chromatography held at Technische Universität Braunschweig, Braunschweig, Germany, August 1–3, 2018, J. Chromatogr. A, 2020, vol. 1617, Article 460698. https://doi.org/10.1016/j.chroma.2019.460698

  12. Morley, R. and Minceva, M., Operating mode and parameter selection in liquid–liquid chromatography, J. Chromatogr. A, 2020, vol. 1617, Article 460479. https://doi.org/10.1016/j.chroma.2019.460479

    Article  CAS  PubMed  Google Scholar 

  13. Roehrer, S. and Minceva, M., Evaluation of interapparatus separation method transferability in countercurrent chromatography and centrifugal partition chromatography, Separations, 2019, vol. 6, p. 36. https://doi.org/10.3390/separations6030036

    Article  CAS  Google Scholar 

  14. Wang, C. and Sun, W., @X. Wang X., Jin Y., Zhao S., Luo M., Tong S. Large-scale separation of baicalin and wogonoside from Scutellaria baicalensis Georgi by the combination of pH-zone-refining and conventional counter-current chromatography, J. Chromatogr. A, 2019, vol. 1601, p. 266. https://doi.org/10.1016/j.chroma.2019.05.028

    Article  CAS  PubMed  Google Scholar 

  15. Peng, A., Hewitson, P., Sutherland, I., Chen, L., and Ignatova, S., How changes in column geometry and packing ratio can increase sample load and throughput by a factor of fifty in counter-current chromatography, J. Chromatogr. A, 2018, vol. 1580, p. 120. https://doi.org/10.1016/j.chroma.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  16. Friesen, J.B., McAlpine, J.B., Chen, S.-N., and Pauli, G.F., The 9th International Countercurrent Chromatography Conference held at Dominican University, Chicago, USA, August 1–3, 2016, J. Chromatogr. A, 2017, vol. 1520, p. 1. https://doi.org/10.1016/j.chroma.2017.08.077

    Article  PubMed  Google Scholar 

  17. Ito, Y., Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography, J. Chromatogr. A, 2005, vol. 1065, p. 145. https://doi.org/10.1016/j.chroma.2004.12.044

    Article  CAS  PubMed  Google Scholar 

  18. Kostanyan, A.E., Modeling of preparative closed-loop recycling liquid–liquid chromatography with specified duration of sample loading, J. Chromatogr. A, 2016, vol. 1471, p. 94. https://doi.org/10.1016/j.chroma.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  19. Conway, W.D., Counter-current chromatography: Simple process and confusing terminology, J. Chromatogr. A, 2011, vol. 1218, p. 6015. https://doi.org/10.1016/j.chroma.2011.03.056

    Article  CAS  PubMed  Google Scholar 

  20. Friesen, J.B., Ahmed, S., and Pauli, G.F., Qualitative and quantitative evaluation of solvent systems for countercurrent separation, J. Chromatogr. A, 2015, vol. 1377, p. 55. https://doi.org/10.1016/j.chroma.2014.11.085

    Article  CAS  PubMed  Google Scholar 

  21. Friesen, J.B., McAlpine, J.B., Chen, S.-N., and Pauli, G.F., Countercurrent separation of natural products: An update, J. Nat. Prod., 2015, vol. 78, p. 1765. https://doi.org/10.1021/np501065h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ignatova, S. and Sutherland, I., The 8th International Conference on Counter-Current Chromatography held at Brunel University, London, UK, July 23–25, 2014, J. Chromatogr. A, 2015, vol. 1425, p. 1. https://doi.org/10.1016/j.chroma.2015.10.096

    Article  CAS  PubMed  Google Scholar 

  23. Guan, Y.H., Hewitson, P., Heuvel, R., Zhao, Y., Siebers, R.P.G., Zhuang, Y.-P., and Sutherland, I., Scale-up protein separation on stainless steel wide bore toroidal columns in the type-J counter-current chromatography, J. Chromatogr. A, 2015, vol. 1424, p. 102. https://doi.org/10.1016/j.chroma.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  24. Kostanyan, A.E., Voshkin, A.A., and Kodin, N.V., Controlled-cycle pulsed liquid–liquid chromatography: A modified version of Craig’s counter-current distribution, J. Chromatogr. A, 2011, vol. 1218, no. 36, pp. 6135–6143. https://doi.org/10.1016/j.chroma.2010.12.103

    Article  CAS  PubMed  Google Scholar 

  25. Berthod, A., Maryutina, T., Spivakov, B., Shpigun, O., and Sutherland, I.A., Countercurrent chromatography in analytical chemistry (IUPAC technical report), Pure Appl. Chem., 2009, vol. 81, p. 355.

    Article  CAS  Google Scholar 

  26. Ito, Y., High-speed countercurrent chromatography, Nature, 1987, vol. 326, pp. 419–420.

    Article  CAS  Google Scholar 

  27. Ito, Y., Origin and evolution of the coil planet centrifuge: A personal reflection of my 40 years of CCC research and development, Sep. Purif. Rev., 2005, vol. 34, pp. 131–154.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research, National Scientific Foundation of Bulgaria (no. 20-53-18007), and the Ministry of Education and Science of Russia (under government contract at the Institute of General and Inorganic Chemistry, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Kostanyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostanyan, A.E., Klychevskikh, Y.A., Milevskii, N.A. et al. Analysis of Extraction Separation in a Cascade of Mixing-Settling Extractors in a Recirculation Liquid-Liquid Chromatography Mode. Theor Found Chem Eng 56, 321–330 (2022). https://doi.org/10.1134/S0040579522030095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522030095

Keywords:

Navigation