Skip to main content
Log in

Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract—

A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the CH4, H2O, CO2, CO, and H2 flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 \( < T < \) 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ramachandran, R. and Menon, R.K., An overview of industrial uses of hydrogen, Int. J. Hydrogen Energy, 1998, vol. 23, p. 593.

    Article  CAS  Google Scholar 

  2. Kirillov, V.A., Meshcheryakov, V.D., Brizitskii, O.F., and Terent’ev, V.Ya., Analysis of a power system based on low-temperature fuel cells and a fuel processor with a membrane hydrogen separator, Theor. Found. Chem. Eng., 2010, vol. 44, no. 3, p. 227.

    Article  CAS  Google Scholar 

  3. Saeidi, S., Fazlollahi, F., Najari, S., Iranshahi, D., Klemes, I.I., and Baxter, L.L., Hydrogen production: Perspectives, separation with special emphasis on kinetics of WGS reaction: A state-of-the-art review, J. Ind. Eng. Chem., 2017, vol. 49, p. 1.

    Article  CAS  Google Scholar 

  4. Rahimpour, M.R., Samimi, F., Babapoor, A., Tohiolian, T., and Mohebi, S., Palladium membranes applications in reaction system for hydrogen separation and purification: A review, Chem. Eng. Process.: Process Intensif., 2017, vol. 121, p. 24.

    Article  CAS  Google Scholar 

  5. Kirillov, V.A., Amosov, Yu.I., Shigarov, A.B., Kuzin, N.A., Kireenkov, V.V., Parmon, V.N., Aristovich, Yu.V., Gritsai, M.A., and Svetov, A.A., Experimental and theoretical study of associated petroleum gas processing into normalized gas by soft steam reforming, Theor. Found. Chem. Eng., 2017, vol. 51, no. 1, p. 12.

    Article  CAS  Google Scholar 

  6. Gryaznov, V.M., Hydrogen permeable palladium membrane catalyst: An aid to the efficient production of ultra pure chemicals and pharmaceuticals, Platinum Met. Rev., 1986, vol. 36, p. 68.

    Google Scholar 

  7. Itoh, N., Inorganic membranes for reaction and separation, AIChE J., 1987, vol. 33, p. 1576.

    Article  CAS  Google Scholar 

  8. Mazali, I.O., Filho, A.G., Viana, B.C., Filho, I.M., and Alves, O.L., Size-controllable synthesis of nanosized-TiO2 anatase using porous Vycor glass as template, J. Nanopart. Res., 2006, vol. 8, p. 141.

    Article  CAS  Google Scholar 

  9. Pizzi, D., Worth, R., Baschetti, M.G., Sarfi, G.C., and Noda, K., Hydrogen permeability of 2.5 μm palladium–silver membranes deposited on ceramic supports, J. Membr. Sci., 2008, vol. 325, no. 1, p. 446.

    Article  CAS  Google Scholar 

  10. Tong I., Shirai R., Kashima Y., Matsumura Y. Preparation of a pinhole-free Pd–Ag membrane on a porous metal support for pure hydrogen separation, J. Membr. Sci., 2005, vol. 260, no. 1, p. 84.

    Article  CAS  Google Scholar 

  11. Brenner, I.R., Bhagat, G., and Vasa, P., Hydrogen purification with palladium and palladium alloys on porous stainless steel membranes, Int. J. Oil, Gas Coal Technol., 2008, vol. 1, nos. 1–2, p. 109.

    Article  CAS  Google Scholar 

  12. Tong, I., Matsumura, Y., Suda, H., and Hazaya, K., Thin and dense Pd/CeO2/MPSS composite membrane for hydrogen separation and steam reforming of methane, Sep. Purif. Technol., 2005, vol. 46, p. 1.

    Article  CAS  Google Scholar 

  13. Shirasaki, Y., Tsuneki, T., Seki, T., Yasuda, I., Sato, T., and Itoh, N., Improvement in hydrogen permeability of palladium membrane by alloying with transition metals, J. Chem. Eng., 2018, vol. 51, p. 123.

    Article  CAS  Google Scholar 

  14. Holleck, G.L., Diffusion and solubility of hydrogen in palladium and palladium–silver alloys, J. Phys. Chem., 1970, vol. 74, p. 503.

    Article  CAS  Google Scholar 

  15. Fort, D., Farr, I., and Hurris, I.A., A comparison of palladium–silver and palladium–yttrium alloys as hydrogen separation membranes, J. Less-Common Met., 1975, vol. 39, p. 293.

    Article  CAS  Google Scholar 

  16. Sakamoto, Y., Chen, F., Furukawa, H., and Noguchi, M., Permeability and diffusivity of hydrogen in palladium-rich Pd–Y(Cd)–Ag ternary alloys, J. Alloys Compd., 1992, vol. 185, p. 191.

    Article  CAS  Google Scholar 

  17. Didenko L.P., Sementsova L.A., Chizhov P.E., Babak V.N., Savchenko V.I. Separation performance of foils from Pd–In (6%)–Ru (0.5%), Pd–Ru (6%), and Pd–Ru (10%) alloys and influence of CO2, CH4, and water vapor on the H2 flow rate through the test membranes, Russ. Chem. Bull., 2016, vol. 65, no. 8, pp. 1997–2003.

    Article  CAS  Google Scholar 

  18. Decaux, C., Nyameni, R., Solas, D., Grigoriev, S., and Hiller, P., Time and frequency domain analysis of hydrogen permeation across PdCu metallic membranes for hydrogen purification, Int. J. Hydrogen Energy, 2010, vol. 35, p. 4883.

    Article  CAS  Google Scholar 

  19. Howard, H., Killmeyer, R., Rothenberger, K., and Cugini, A., Hydrogen permeance of palladium–copper alloy membranes over a wide range of temperatures and pressure, J. Membr. Sci., 2004, vol. 841, p. 207.

    Article  CAS  Google Scholar 

  20. Acha, E., Regnes, I., Barrio, V.I., Cambra, I.F., Guemez, M.R., Arias, P.I., et al., PdCu membrane integration and lifetime in the production of hydrogen from methane, Int. J. Hydrogen Energy, 2013, vol. 38, p. 7659.

    Article  CAS  Google Scholar 

  21. Yuan, L., Goldbach, A., and Xu, H., Permeation hysteresis in PdCu membranes, J. Phys. Chem. B, 2008, vol. 112, p. 12692.

    Article  CAS  PubMed  Google Scholar 

  22. Haws H.W., Paglieri S.N., Marris C.C., Harall A., Way I.D. Application of Pd–Ru composite membrane to hydrogen production in a high temperature membrane reactor, Ser. Purif. Technol., 2015, vol. 147, p. 388.

    Article  CAS  Google Scholar 

  23. Kamakati, P., Morreale, B.D., Ciocco, M.V., et al., Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes, Science, 2005, vol. 507, p. 569.

    Article  CAS  Google Scholar 

  24. Coroneo, H., Houtante, G., Catalane, I., and Paglianti, A., Modelling the effect of operating conditions on hydrodynamics and mass transfer in Pd–Ag membrane module for H2 purification, J. Membr. Sci., 2009, vol. 343, p. 34.

    Article  CAS  Google Scholar 

  25. Tiemersma, T.P., Patie, C.S., Annalong, M.S., and Kuipers, I.A.M., Modelling of packed bed reactors for production of ultrapure hydrogen, Chem. Eng. Sci., 2006, vol. 61, p. 1602.

    Article  CAS  Google Scholar 

  26. Falco, M., Paola, L.D., and Harrelli, L., Heat transfer and hydrogen permeability in modelling industrial membrane reactors for methane steam reforming, Int. J. Hydrogen Energy, 2007, vol. 32, p. 2902.

    Article  CAS  Google Scholar 

  27. Gallici, F., Comite, A., Capannelli, G., and Basill, A., Steam reforming of methane in a membrane reactor: An industrial case study, Ind. Eng. Chem. Res., 2006, vol. 45, p. 2994.

    Article  CAS  Google Scholar 

  28. Caravella, A., Mario, F.P., and Renzo, A., Optimization of membrane area and catalyst distribution in a permeative-stage membrane reactor for methane steam reforming, J. Membr. Sci., 2008, vol. 321, p. 209.

    Article  CAS  Google Scholar 

  29. Wilde, I. and Fromet, G.F., Computation fluid dynamics in chemical reactor analysis and design: Application to the zone flow reactor for methane steam reforming, Fuel, 2012, vol. 100, p. 48.

    Article  CAS  Google Scholar 

  30. Kim, Ch.-H., Han, I.-H., Lim, H.-K., Kim, D.-H., and Ryi, S.-K., Methane steam reforming in membrane reactor using high-permeable and low-selective Pd–Ru membrane, Korean J. Chem. Eng., 2017, vol. 34, p. 1260.

    Article  CAS  Google Scholar 

  31. Schädel, B.T., Duisberg, M., and Deutschmann, O., Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst, Catal. Today, 2009, vol. 142, p. 42.

    Article  CAS  Google Scholar 

  32. Rakib, M.A. and Grade, I.R., Steam reforming of propane in a fluidized bed membrane reactor for hydrogen production, Int. J. Hydrogen Energy, 2010, vol. 35, p. 6276.

    Article  CAS  Google Scholar 

  33. Didenko, L.P., Sementsova, L.A., Babak, V.N., Chizhov, P.E., Dorofeeva, T.V., and Kvurt, Yu.P., Steam reforming of a n-butane in membrane reactor with industrial nickel catalyst and foil made of Pd–Ru alloy, Membr. Membr. Technol., 2020, vol. 10, no. 2, p. 85.

    Article  Google Scholar 

  34. Didenko, L.P., Babak, V.N., Sementsova, L.A., Chizhov, P.E., and Dorofeeva, T.V., Steam conversion of propane in a membrane reactor with industrial nickel catalyst, Pet. Chem., 2021, vol. 61, no. 1, p. 92.

    Article  CAS  Google Scholar 

  35. Asci, A.K., Trimm, D.L., Arsoylu, A.E., and Önsan, Z.I., Hydrogen production by steam reforming of n-butane over supported Ni and Pt–Ni catalysts, App. Catal., A, 2004, vol. 258, p. 255.

  36. Didenko, L.P., Voronetsky, M.S., Sementsova, L.A., Barelco, V.V., Bikov, L.A., et al., Technical characteristics of the hydrogen-filtering module on a base of the palladium foil, Int. Sci. J. Altern. Energy Ecol., 2010, no. 10, p. 154.

  37. Boeltken, T., Wunsch, A., Gietzeet, T., Pfeifer, P., and Dittmeyer, R., Ultra-compact microstructured methane steam reforming with integrated palladium membrane for on-site production of pure hydrogen: Experimental demonstration, Int. J. Hydrogen Energy, 2014, vol. 30, p. 18058.

    Article  CAS  Google Scholar 

  38. Babak, V.N., Didenko, L.P., Kvurt, Y.P., and Sementsova, L.A., The recovery of hydrogen from binary gas mixtures using a membrane module based on a palladium foil taking into account the deactivation of the membrane, Theor. Found. Chem. Eng., 2018, vol. 52, no. 3, pp. 371–385.

    Article  CAS  Google Scholar 

  39. Dubinin, A.M., Tuponogov, V.G., and Ikonnikov, I.S., Modeling the process of producing hydrogen from methane, Theor. Found. Chem. Eng., 2013, vol. 47, no. 6, pp. 697–701.

    Article  CAS  Google Scholar 

  40. Gradl, S.R., Thoen, P.M., and Way, I.D., Unsupported palladium alloy foil membranes fabricated by electroless plating, J. Membr. Sci., 2008, vol. 316, p. 112.

    Article  CAS  Google Scholar 

  41. Burkhanov, G.S., Gorina, N.B., Kolchugina, N.B., Roshan, N.R., Slovetsky, D.I., and Chistov, E.M., Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures, Platinum Met. Rev., 2011, vol. 55, no. 1, p. 3.

    Article  CAS  Google Scholar 

  42. Babak, V.N., Didenko, L.P., and Kvurt, Yu.P., Investigation of methane steam reforming in a catalytic reactor with a palladium foil membrane, in Proceedings of the International Conference on Mathematical Methods in Technics and Technology (MMTT-33), Kazan, 2020, vol. 4, p. 65.

  43. Xu, I. and Fromet, G.F., Methane steam reforming. methanation and water-gas shift: I. Intrinsic kinetics, AIChE J., 1989, vol. 35, no. 1, p. 88.

    Article  CAS  Google Scholar 

  44. Lin, Y.M., Liu, Sh.I., Chuang, Ch.H., and Chu, Y.T., Effect of incipient removal of hydrogen through palladium membrane on conversion of methane steam reforming: Experimental and modelling, Catal. Today, 2003, vol. 82, no. 1, p. 127.

    Article  CAS  Google Scholar 

  45. Falko, M. and Marrelli, P.L., Heat transfer and hydrogen permeability in modelling industrial membrane reactors for methane steam reforming, Int. J. Hydrogen Energy, 2007, vol. 32, p. 2094.

    CAS  Google Scholar 

  46. Sieverts, A. and Krumbhaar, W., Über die Löslichkeit von Gasen in Metallen und Legierungen, Ber. Dtsch. Chem. Ges., 1910, vol. 43, p. 893.

    Article  CAS  Google Scholar 

  47. Krylov, O.V., Heterogeneous Catalysis, Moscow: IKTs Akademkniga, 2004.

  48. Demidovich, B.P., Maron, I.A., and Shuvalov, E.Z., Numerical Methods of Analysis, Moscow: GIFML, 1963.

    Google Scholar 

Download references

Funding

This work was performed as a part of the Program for Basic Research of the State Academies of Sciences, topic IPCP RAS 0089-2019-0018 (state registration no. AAAA-A19-119022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Babak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babak, V.N., Didenko, L.P., Sementsova, L.A. et al. Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil. Theor Found Chem Eng 56, 279–295 (2022). https://doi.org/10.1134/S0040579522030034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522030034

Keywords:

Navigation