Skip to main content
Log in

Selecting a Landing Site for the Luna 27 Spacecraft

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

At present, the task of selecting landing sites for the Luna 27 spacecraft is provided with alarge amount of actual data, often with a higher spatial resolution compared to the data used to select of the Luna 25 landing sites. In addition, more data about the lunar surface with a spatial resolution comparable to the size of a spacecraft can be further obtained using the Luna 26 orbiter. Preliminary estimates of the lunar surface conditions in the south polar region, south of 80° S, for the landing of Luna 27 spacecraft have revealed the need to seriously improve the landing accuracy in comparison with the Luna 25 landing ellipse. The size of such landing ellipse south of 80° S makes a safe landing almost impossible since the surface near the Moon’s south pole does not have a single smooth and illuminated area of that size. Increasing the landing accuracy up to 5 km opens up the possibility of choosing a landing site among six candidates. A further increase in landing accuracy up to 3 km can provide a wide choice among 15 candidate sites, each allowing both a safe landing and the accomplishment of the Luna 27 scientific mission. Finally, with a landing accuracy of about 500 m, one can outline vast areas in the vicinity of the south pole with numerous sites offering favorable conditions both for a safe landing and for carrying out an extensive scientific program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bussey, D.B.J., McGovern, J.A., Spudis, P.D., Neish, C.D., Noda, H., Ishihara, Y., and Sorensen, S.-A., Illumination conditions of the south pole of the Moon derived using Kaguya topography, Icarus, 2010, vol. 208, no. 2, pp. 558–564.

    Article  ADS  Google Scholar 

  2. Djachkova, M.V., Litvak, M.L., Mitrofanov, I.G., and Sanin, A.B., Selection of Luna-25 landing sites in the South Polar Region of the Moon, Sol. Syst. Res., 2017, vol. 51, no. 3, pp. 185–195.

    Article  ADS  Google Scholar 

  3. Dolgopolov, V.P., Efanov, V.V., Zaitseva, O.N., Zelenyi, L.M., Martynov, M.B., and Pichkhadze, K.M., Future spacecraft for fundamental and applied research of the Moon, Kosmonavtika Raketostr., 2011, no. 3 (64), pp. 52–65.

  4. Garrick-Bethell, I. and Zuber, M.T., Elliptical structure of the lunar South Pole–Aitken basin, Icarus, 2009, vol. 204, no. 3, pp. 399–408.

    Article  ADS  Google Scholar 

  5. Ivanov, M.A., Hiesinger, H., van der Bogert, C.H., Orgel, C., Pasckert, J.H., and Head, J.W., Geologic history of the northern portion of the South Pole–Aitken basin on the Moon, J. Geophys. Res.: Planets, 2018, vol. 123, no. 10, pp. 2585–2612.

    Article  ADS  Google Scholar 

  6. James, P.B., Smith, D.E., Byrne, P.K., Kendall, J.D., Melosh, H.J., and Zuber, M.T., Deep structure of the lunar South Pole–Aitken basin, Geophys. Res. Lett., 2019, vol. 46, no. 10, pp. 5100–5106.

    Article  ADS  Google Scholar 

  7. Mazarico, E., Neumann, G.A., Smith, D.E., Zuber, M.T., and Torrence, M.H., Illumination conditions of the lunar polar regions using LOLA topography, Icarus, 2011, vol. 211, pp. 1066–1081.

    Article  ADS  Google Scholar 

  8. Melosh, H.J., Kendall, J., Horgan, B., Johnson, B.C., Bowling, T., Lucey, P.G., and Taylor, G.J., South Pole–Aitken basin ejecta reveal the Moon’s upper mantle, Geology, 2017, vol. 45, pp. 1063–1066.

    Article  ADS  Google Scholar 

  9. Mitrofanov, I.G., Sanin, A.B., and Litvak, M.L., Water in the Moon’s polar regions: Mapping results from the LEND neutron telescope, Dokl. Ross. Akad. Nauk, 2016, vol. 466, no. 6, pp. 660–663.

    Google Scholar 

  10. Moriarty, D.P., Watkins, R.N., Valencia, S.N., Kendall, J.D., and Petro, N.E., Mineralogy of thorium-enhanced materials within the South Pole–Aitken basin: Possible traces of the lunar upper mantle, 50th Lunar and Planet. Sci. Conf., 18–22 March, 2019, Woodlands, TX, LPI Contribution no. 2132, id. 2874.

  11. Paige, D.A., Foote, M.C., Greenhagen, B.T., Schofield, J.T., Calcutt, S., Vasavada, A.R., Preston, D.J., Taylor, F.W., Allen, C.C., Snook, K.J., Jakosky, B.M., Murray, B.C., Soderblom, L.A., Jau, B., Loring, S., Bulharowski, J., Bowles, N.E., Thomas, I.R., Sullivan, M.T., Avis, C., De Jong, E.M., Hartford, W., and McCleese, D.J., The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment, Space Sci. Rev., 2010, vol. 150, nos. 1–4, pp. 125–160.

    Article  ADS  Google Scholar 

  12. Sanin, A.B., Mitrofanov, I.G., Litvak, M.L., Bakhtin, B.N., Bodnarik, J.G., Boynton, W.V., Chin, G., Evans, L.G., Harshman, K., Fedosov, F., Golovin, D.V., Kozyrev, A.S., Livengood, T.A., Malakhov, A.V., McClanahan, T.P., Mokrousov, M.I., Starr, R.D., Sagdeev, R.Z., Tret’yakov V.I., and Vostrukhin, A.A., Hydrogen distribution in the lunar polar regions, Icarus, 2017, vol. 283, pp. 20–30.

    Article  ADS  Google Scholar 

  13. Schultz, P.H. and Crawford, D., Origin of nearside structural and geochemical anomalies on the Moon, Recent Advances and Current Research Issues in Lunar Stratigraphy, Ambrose, W.A. and Williams, D.A., Eds., Geological Soc. Am. Special Papers, 2011, vol. 477, pp. 141–159.

    Google Scholar 

  14. Smith, D.E., Zuber, M.T., Jackson, G.B., Cavanaugh, J.F., Neumann, G.A., Riris, H., Sun, X., Zellar, R.S., Coltharp, C., Connelly, J., Katz, R.B., Kleyner, I., Liiva, P., Matuszeski, A., Mazarico, E.M., McGarry, J.F., Novo-Gradac, A.-M., Melanie, N.O., Peters, C., Ramos-Izquierdo, L.A., Ramsey, L., Rowlands, D.D., Schmidt, S., Scott, V.S., Shaw, G.B., Smith, J.C., Swinski, J.-P., Torrence, M.H., Unger, G., Yu, A.W., and Zagwodzki, T.W., The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission, Space Sci. Rev., 2010, vol. 150, pp. 209–241.

    Article  ADS  Google Scholar 

  15. Tretyakov, V.I., Zelenyi, L.M., and Mitrofanov, I.G., Overview of Luna-27 science instruments, The Eleventh Moscow Int. Solar Syst. Symp., October 5–9, 2020, Moscow, Russia, id. 11MS3-MN-10.

  16. Vondrak, R., Keller, J., Chin, G., and Garvin, J., Lunar Reconnaissance Orbiter (LRO): Observations for lunar exploration and science, Space Sci. Rev., 2010, vol. 150, pp. 7–22.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. AAAA-A18-118012290370-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Djachkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kobkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djachkova, M.V., Mitrofanov, I.G., Sanin, A.B. et al. Selecting a Landing Site for the Luna 27 Spacecraft. Sol Syst Res 56, 145–154 (2022). https://doi.org/10.1134/S0038094622030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094622030029

Keywords:

Navigation