Skip to main content
Log in

Dynamic Evolution of Pairs of Trans-Neptunian Objects

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

A search for pairs of trans-Neptunian objects in close orbits with semimajor axes of more than 30 AU has been performed. Distances in space of Keplerian orbits were estimated using the Kholshevnikov metrics. We revealed 26 pairs of trans-Neptunian objects with metrics less than 0.07 (AU)1/2. Based on nominal orbits, the dynamic evolution of pairs of trans-Neptunian objects in the past over a time interval of 10 million years has been studied numerically. For the pair 2003 QL91—2015 VA173, a study of probabilistic evolution was carried out in the past over a time interval of 10 million years. Estimates of the age of pairs of trans-Neptunian objects obtained by various methods: analysis of low-speed approaches of objects, convergence of orbits, approaches of lines of nodes and apses, give conflicting results. The age of most of the pairs considered exceeds 10 million years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Benz, W. and Asphaug, E., Catastrophic disruptions revisited, Icarus, 1999, vol. 142, pp. 5–20.

    Article  ADS  Google Scholar 

  2. Boehnhardt, H., Split comets, in Comets II, Festou, M.C., Keller, H.U., and Weaver, H.A., Eds., Tucson: Univ. Arizona Press, 2004, pp. 301–316.

    Google Scholar 

  3. Bowell, E., Hapke, B., Domingue, D., Lumme, K., Peltoniemi, J., and Harris, A.W., Application of photometric models to asteroids, Asteroids II. Proc. Conf., Tucson, AZ, Mar. 8–11, 1988 (A90-27001 10-91), Tucson: Univ. Arizona Press, 1989, pp. 524–556.

  4. Brown, M.E., Barkume, K.M., Ragozzine, D., and Schaller, E.L., A collisional family of icy objects in the Kuiper belt, Nature, 2007, vol. 446, pp. 294–296.

    Article  ADS  Google Scholar 

  5. Campbell, H., Stability and formation of ultra-wide Kuiper belt binaries, Bull. Am. Astron. Soc., 2021, vol. 53, no. 5, id. 501.04. https://baas.aas.org/pub/2021n5i501p04

  6. Chiang, E.I., A collisional family in the classical Kuiper belt, Astrophys. J. Lett., 2002, vol. 573, pp. L65–L68.

    Article  ADS  Google Scholar 

  7. Chiang, E.I., Lovering, J.R., Millis, R.L., Buie, M.W., Wasserman, L.H., and Meech, K.J., Resonant and secular families of the Kuiper belt, Earth Moon Planets, 2003, vol. 92, pp. 49–62.

    Article  ADS  Google Scholar 

  8. Deienno, R., Gomes, R.S., Walsh, K.J., Morbidelli, A., and Nesvorný, D., Is the Grand Tack model compatible with the orbital distribution of main belt asteroids?, Icarus, 2016, vol. 272, pp. 114–124.

    Article  ADS  Google Scholar 

  9. Fernandez, J.A., Introduction: The Trans-Neptunian belt—past, present, and future, The Trans-Neptunian Solar System, Prialnik, D., Barucci, M.A., and Young, L.A., Eds., Amsterdam: Elsevier, 2020, pp. 1–22.

    Google Scholar 

  10. de la Fuente Marcos, C. and de la Fuente Marcos, R., Far from random: dynamical groupings among the neo population, Mon. Not. R. Astron. Soc., 2016, vol. 456, pp. 2946–2956.

    Article  ADS  Google Scholar 

  11. de la Fuente Marcos, C. and de la Fuente Marcos, R., Dynamically correlated minor bodies in the outer Solar System, Mon. Not. R. Astron. Soc., 2018, vol. 474, pp. 838–846.

    Article  ADS  Google Scholar 

  12. Gladman, B., Marsden, B.G., and Vanlaerhoven, C., Nomenclature in the outer Solar System, The Solar System Beyond Neptune, Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., and Morbidelli, A., Eds., Tucson: Univ. Arizona Press, 2008, pp. 43–57.

    Google Scholar 

  13. Gomes, R., The formation of the cold classical Kuiper belt by a short range transport mechanism, Icarus, 2021, vol. 357, id. 114121.

  14. Granvik, M., Morbidelli, A., Vokrouhlický, D., Bottke, W.F., Nesvorný, D., and Jedicke, R., Escape of asteroids from the main belt, Astron. Astrophys., 2017, vol. 598, id. A52.

  15. Grundy, W.M., Noll, K.S., Virtanen, J., Muinonen, K., Kern, S.D., Stephens, D.C., Stansberry, J.A., and Spencer, J.R., (42355) Typhon/Echidna: Scheduling observations for binary orbit determination, Icarus, 2008, vol. 197, pp. 260–268.

    Article  ADS  Google Scholar 

  16. Jacobson, S.A., Multiple origins of asteroid pairs, Asteroids: New Observations, New Models, Chesley, S.R., Morbidelli, A., Jedicke, R., and Farnocchia, D., Eds., 2016, vol. 318, pp. 55–65.

    Google Scholar 

  17. Jacobson, S.A. and Scheeres, D.J., Dynamics of rotationally fissioned asteroids: source of observed small asteroid systems, Icarus, 2011, vol. 214, pp. 161–178.

    Article  ADS  Google Scholar 

  18. Kavelaars, J.J., Jones, L., Gladman, B., Parker, J.W., and Petit, J.-M., The orbital and spatial distribution of the Kuiper belt, The Solar System Beyond Neptune, Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., and Morbidelli, A., Eds., Tucson: Univ. Arizona Press, 2008, pp. 59–69.

    Google Scholar 

  19. Kholshevnikov, K.V., Kokhirova, G.I., Babadzhanov, P.B., and Khamroev, U.H., Metrics in the space of orbits and their application to searching for celestial objects of common origin, Mon. Not. R. Astron. Soc., 2016, vol. 462, pp. 2275–2283.

    Article  ADS  Google Scholar 

  20. Kholshevnikov, K.V., Shchepalova, A.S., and Jazmati, M.S., On a quotient space of Keplerian orbits, Vestn. St. Petersb. Univ.: Math., 2020, vol. 531, pp. 108–114.

    MathSciNet  MATH  Google Scholar 

  21. Kuznetsov, E. and Safronova, V., Application of metrics in the space of orbits to search for asteroids on close orbits, Planet. Space Sci., 2018, vol. 157, pp. 22–27.

    Article  ADS  Google Scholar 

  22. Kuznetsov, E.D. and Vasileva, M.A., On new members of asteroid clusters similar to asteroid pairs, Meteoritics Planet. Sci., 2019, vol. 54, no. S2, id. A229.

  23. Kuznetsov, E.D., Rosaev, A.E., Plavalova, E., Safronova, V.S., and Vasileva, M.A., A search for young asteroid pairs with close orbits, Sol. Syst. Res., 2020, vol. 54, no. 3, pp. 236–252.

    Article  ADS  Google Scholar 

  24. Lacerda, P. and Jewitt, D.C., Densities of Solar System objects from their rotational lightcurves, Astron. J., 2007, vol. 133, pp. 1393–1408.

    Article  ADS  Google Scholar 

  25. Marcus, R.A., Ragozzine, D., Murray-Clay, R.A., and Holman, M.J., Identifying collisional families in the Kuiper belt, Astrophys. J., 2011, vol. 733, id. 40.

  26. Morbidelli, A. and Nesvorný, D., Kuiper Belt: formation and evolution, in The Trans-Neptunian Solar System, Prialnik, D., Barucci, M.A., and Young, L.A., Eds., Amsterdam: Elsevier, 2020, pp. 25–59.

    Google Scholar 

  27. Muller, T., Lellouch, E., and Fornasier, S., Trans-Neptunian objects and Centaurs at thermal wavelengths, in The Trans-Neptunian Solar System, Prialnik, D., Barucci, M.A., and Young, L.A, Eds., Amsterdam: Elsevier, 2020, pp. 153–181.

    Google Scholar 

  28. Nesvorný, D. and Vokrouhlický, D., Binary survival in the outer solar system, Icarus, 2019, vol. 331, pp. 49–61.

    Article  ADS  Google Scholar 

  29. Orbfit Consortium, OrbFit: Software to determine orbits of asteroids, Astrophysics Source Code Library, 2011. arXiv:1106.015

  30. Pravec, P. and Vokrouhlický, D., Significance analysis of asteroid pairs, Icarus, 2009, vol. 204, pp. 580–588.

    Article  ADS  Google Scholar 

  31. Pravec, P., Vokrouhlický, D., Polishook, D., Scheeres, D.J., Harris, A.W., Galád, A., Vaduvescu, O., Pozo, F., Barr, A., Longa, P., Vachier, F., Colas, F., Pray, D.P., Pollock, J., Reichart, D., Ivarsen, K., Haislip, J., LaCluyze, A., Kusnirak, P., Henych, T., Marchis, F., Macomber, B., Jacobson, S.A., Krugly, Yu.N., Sergeev, A.V., and Leroy, A., Formation of asteroid pairs by rotational fission, Nature, 2010, vol. 466, pp. 1085–1088.

    Article  ADS  Google Scholar 

  32. Pravec, P., Fatka, P., Vokrouhlický, D., Scheeres, D.J., Kušnirák, P., Hornoch, K., Galád, A., Vraštil, J., Pray, D.P., Krugly, Yu.N., Gaftonyuk, N.M., Inasaridze, R.Ya., Ayvazian, V.R., Kvaratskhelia, O.I., Zhuzhunadze, V.T., Husárik, M., Cooney, W.R., Gross, J., Terrell, D., Világi, J., Kornoš, L., Gajdoš, Š., Burkhonov, O., Ehgamberdiev, Sh.A., Donchev, Z., Borisov, G., Bonev, T., Rumyantsev, V.V., and Molotov, I.E., Asteroid clusters similar to asteroid pairs, Icarus, 2018, vol. 304, pp. 110–126.

    Article  ADS  Google Scholar 

  33. Pravec, P., Fatka, P., Vokrouhlický, D., Scheirich, P., Durech, J., Scheeres, D.J., Kušnirak, P., Hornoch, K., Galad, A., Pray, D.P., Krugly, Yu.N., Burkhonov, O., Ehgamberdiev, Sh.A., Pollock, J., Moskovitz, N., Thirouin, A., Ortiz, J.L., Morales, N., Husarik, M., Inasaridze, R.Ya., Oey, J., Polishook, D., Hanuš, J., Kučakova, H., Vraštil, J., Vilagi J., Gajdoš, Š., Kornoš, L., Vereš, P., Gaftonyuk, N.M., Hromakina, T., Sergeyev, A.V., Slyusarev, I.G., Ayvazian, V.R., Cooney, W.R., Gross, J., Terrell, D., Colas, F., Vachier, F., Slivan, S., Skiff, B., Marchis, F., Ergashev, K.E., Kim, D.-H., Aznar, A., Serra-Ricart, M., Behrend, R., Roy, R., Manzini, F., and Molotov, I.E., Asteroid pairs: a complex picture, Icarus, 2019, vol. 333, pp. 429–463.

    Article  ADS  Google Scholar 

  34. Prigarin, S.M., Chislennoe modelirovanie mnogomernykh gaussovskikh raspredelenii (Numerical Simulation of Multivariate Gaussian Distributions), Novosibirsk: Novosib. Gos. Univ., 2018.

  35. Rabinowitz, D., Schwamb, M.E., Hadjiyska, E., Rojo, P., and Tourtellotte, S., A tale of two TNOs, EPSC-DPS Joint Meeting, 2011, vol. 6, id. EPSC-DPS2011-1642.

  36. Rosaev, A. and Plavalova, E., On relative velocity in very young asteroid families, Icarus, 2018, vol. 304, pp. 135–142.

    Article  ADS  Google Scholar 

  37. Vokrouhlický, D. and Nesvorný, D., Pairs of asteroids probably of a common origin, Astron. J., 2008, vol. 136, pp. 280–290.

    Article  ADS  Google Scholar 

  38. Vokrouhlický, D., Pravec, P., Ďurech, J., Bolin, B., Jedicke, R., Kušnirák, P., Galád, A., Hornoch, K., Kryszczyńska, A., Colas, F., Moskovitz, N., Thirouin, A., and Nesvorný, D., The young Datura asteroid family: Spins, shapes and population estimate, Astron. Astrophys., 2017, vol. 598, id. A91.

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project FEUZ-2020-0038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Seifina

Based on the materials of the VII Bredikhin Readings (May 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, E.D., Al-Shiblawi, O.M. & Gusev, V.D. Dynamic Evolution of Pairs of Trans-Neptunian Objects. Sol Syst Res 56, 122–134 (2022). https://doi.org/10.1134/S003809462202006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809462202006X

Keywords:

Navigation