Skip to main content
Log in

De Rham’s Theorem for Orlicz Cohomology

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove that the de Rham \( L^{\phi} \)-cohomology of a Riemannian manifold \( M \) admitting a convenient triangulation \( X \) is isomorphic to the simplicial \( \ell^{\phi} \)-cohomology of \( X \) under some assumptions on the Young function \( \phi \). This result implies the quasi-isometry invariance of the first cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carrasco Piaggio M., “Orlicz spaces and the large scale geometry of Heintze groups,” Math. Ann., vol. 368, no. 1, 433–481 (2017).

    Article  MathSciNet  Google Scholar 

  2. Gol’dshtein V. and Kopylov Ya., “Some calculations of Orlicz cohomology and Poincaré–Sobolev–Orlicz inequalities,” Sib. Electr. Math. Reports, vol. 16, 1079–1090 (2019).

    MATH  Google Scholar 

  3. Kopylov Ya., “Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology,” Problemy Analiza, vol. 6, no. 2, 57–80 (2017).

    MathSciNet  MATH  Google Scholar 

  4. Kopylov Ya., “On the Orlicz cohomology of star-bounded simplicial complexes,” Sib. Electr. Math. Reports, vol. 18, 710–719 (2021).

    MathSciNet  MATH  Google Scholar 

  5. Kopylov Ya. A. and Panenko R. A., “\( \Phi \)-Harmonic functions on discrete groups and the first \( \ell^{\Phi} \)-cohomology,” Sib. Math. J., vol. 55, no. 5, 904–914 (2014).

    Article  MathSciNet  Google Scholar 

  6. Kopylov Ya. A. and Panenko R. A., “De Rham regularization operators in Orlicz spaces of differential forms on Riemannian manifolds,” Sib. Electr. Math. Reports, vol. 12, 361–371 (2015).

    MathSciNet  MATH  Google Scholar 

  7. Pansu P., “Cohomologie \( L^{p} \) et piencement,” Comment. Math. Helv., vol. 83, no. 2, 327–357 (2008).

    Article  MathSciNet  Google Scholar 

  8. Sequeira E., Relative \( L^{p} \)-Cohomology and Applications to Heintze Groups. PhD Thesis, Universidad de la República (Uruguay) and Université de Lille (France), Lille (2020).

    Google Scholar 

  9. Gol’dshtein V. M. and Troyanov M., “Sobolev inequalities for differential forms and \( L_{q,p} \)-cohomology,” J. Geom. Anal., vol. 16, no. 4, 597–631 (2016).

    Article  MathSciNet  Google Scholar 

  10. Puls M., “The first \( L^{p} \)-cohomology of some finitely generated groups and \( p \)-harmonic functions,” J. Funct. Anal., vol. 237, no. 2, 391–401 (2006).

    Article  MathSciNet  Google Scholar 

  11. Bourdon M. and Rémy B., “Quasi-isometric invariance of continuous group \( L^{p} \)-cohomology, and first applications to vanishings,” Ann. Henri Lebesgue, vol. 3, 1291–1326 (2020).

    Article  MathSciNet  Google Scholar 

  12. Genton L., Scaled Alexander–Spanier Cohomology and \( L_{qp} \)-Cohomology for Metric Spaces. PhD Thesis no. 6330, EPFL, Lausanne (2014).

    Google Scholar 

  13. Gol’dshtein V. M., Kuz’minov V. I., and Shvedov I. A., “The de Rham isomorphism of \( l_{p} \)-cohomology of noncompact Riemannian manifold,” Sib. Math. J., vol. 29, no. 2, 190–197 (1988).

    Article  Google Scholar 

  14. Pansu P., Cohomologie \( L^{p} \): Invariance sour quasiisométries [Preprint] (1995). https://www.math.u-psud.fr/pansu/liste-prepub.html

    Google Scholar 

  15. Attie O., “Quasi-isometry classification of some manifolds of bounded geometry,” Math. Z., vol. 216, no. 4, 501–527 (1994).

    Article  MathSciNet  Google Scholar 

  16. Bott R. and Tu L. W., Differential Forms in Algebraic Topology, Springer, New York (1982) (Graduate Text Math.; Vol. 82).

    Book  Google Scholar 

  17. Rao M. M. and Ren Z. D., Theory of Orlicz Spaces, Marcel Dekker, New York (1991) (Monogr. Textbooks Pure Appl. Math.; Vol. 146).

    MATH  Google Scholar 

  18. Whitney H., Geometric Integration Theory, Princeton University, Princeton (1957).

    Book  Google Scholar 

Download references

Acknowledgments

The author is deeply grateful to Marc Bourdon and Matías Carrasco for their guidance and valuable suggestions, and to Yaroslav Kopylov for his helpful ideas and discussions. The author thanks the anonymous referee for important corrections.

Funding

The work is supported by the Mathematical Center in Akademgorodok under Agreement 075–15–2019–1675 with the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sequeira.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 4, pp. 935–948. https://doi.org/10.33048/smzh.2022.63.418

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sequeira, E. De Rham’s Theorem for Orlicz Cohomology. Sib Math J 63, 777–788 (2022). https://doi.org/10.1134/S0037446622040188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622040188

Keywords

UDC

Navigation