Skip to main content
Log in

Magnetic State of the Nickel Oxide Nanoparticles Formed in Low-Pressure Arc Discharge Plasma

  • PHYSICAL METALLURGY. THERMAL AND THERMOCHEMICAL TREATMENT TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Nickel oxide nanoparticles are synthesized for the first time by spraying of high-purity nickel in the oxygen plasma of a low-pressure arc discharge. The structure, morphology, and optical and magnetic properties of the NiO nanoparticles are studied by various techniques. X-ray diffraction data and processing X-ray diffraction patterns by the Rietveld method show that the nanoparticles have a cubic lattice and are 13 nm in size. Transmission electron microscopy images show that the NiO nanoparticles are characterized by a narrow particle-size distribution, from 5 to 25 nm. The band gap of NiO determined from its optical absorption spectrum is 3.21 eV. Based on the experimental data and their analysis, possible scopes of application of the prepared material as magnetic recording devices are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. Lisjak and A. Mertelj, “Anisotropic magnetic nanoparticles: a review of their properties, syntheses and potential applications,” Progr. Mater. Sci. 95, 286–328 (2018). https://doi.org/10.1016/j.pmatsci.2018.03.003

  2. X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, and M. Maaza, “An electrochemically active green synthesized polycrystalline NiO/MgO catalyst: use in photo-catalytic applications,” Mater. Res. Bull. 97, 457–465 (2018). https://doi.org/10.1016/j.materresbull.2017.09.022

    Article  CAS  Google Scholar 

  3. A. Kumar Rai, Anh L. Tuan, C.-J. Park, and J. Kim, “Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries” Ceram. Intern. 39 (6), 6611–6618 (2013). https://doi.org/10.1016/j.ceramint.2013.01.097

    Article  CAS  Google Scholar 

  4. R. M. Silva, R. A. Raimundo, W. V. Fernandes et al., “Proteic sol-gel synthesis, structure and magnetic properties of Ni/NiO core–shell powders,” Ceram. Intern. 44, (6), 6152–6156 (2018). https://doi.org/10.1016/j.ceramint.2017.12.248

    Article  CAS  Google Scholar 

  5. Y. Bi, A. Nautiyal, H. Zhang, et al., “One-pot microwave synthesis of NiO/MnO2 composite as a high-performance electrode material for supercapacitors, “Electrochim. Acta 260, 952–958 (2018). https://doi.org/10.1016/j.electacta.2017.12.074

    Article  CAS  Google Scholar 

  6. S. Senobari and A. Nezamzadeh-Ejhieh, “A comprehensive study on the enhanced photocatalytic activity of CuO–NiO nanoparticles: designing the experiments,” J. Mol. Liq. 261, 208–217 (2018). https://doi.org/10.1016/j.molliq.2018.04.028

    Article  CAS  Google Scholar 

  7. S. Mørup, D. E. Madsen, C. Frandsen, et al., “Experimental and theoretical studies of nanoparticles of antiferromagnetic materials,” J. Phys. Condens. Matter. 19, 213202 (2007). https://doi.org/10.1088/0953-8984/19/21/213202

    Article  CAS  Google Scholar 

  8. A. V. Ushakov, I. V. Karpov, and A. A. Lepeshev, “Peculiarities of magnetic behavior of CuO nanoparticles produced by plasma-arc synthesis in a wide temperature range,” J. Supercond. Novel Magn. 30 (12), 3351–3354 (2017). https://doi.org/10.1007/s10948-017-4311-2

    Article  CAS  Google Scholar 

  9. I. V. Karpov, A. V. Ushakov, V. G. Demin, et al., “Investigation of the residual stresses effect on the magnetic properties of CuO nanoparticles synthesized in a low-pressure arc discharge plasma,” J. Magn. Magn. Mater. 490, 165492 (2019). https://doi.org/10.1016/j.jmmm.2019.165492

    Article  CAS  Google Scholar 

  10. E. Winkler, R. D. Zysler, M. Vasquez Mansilla, et al., “Surface anisotropy effects in NiO nanoparticles,” Phys. Rev. B 72, 132409 (2005). https://doi.org/10.1103/PhysRevB.72.132409

    Article  CAS  Google Scholar 

  11. M. Tadić, M. Panjan, D. Marković, et al., “Unusual magnetic properties of NiO nanoparticles embedded in a silica matrix,” J. Alloys Compd. 509 (25), 7134–7138 (2011). https://doi.org/10.1016/j.jallcom.2011.04.032

    Article  CAS  Google Scholar 

  12. S. D. Tiwari and K. P. Rajeev, “Signatures of spin-glass freezing in NiO nanoparticles,” Phys. Rev. B 72, 104433 (2005). https://doi.org/10.1103/PhysRevB.72.104433

    Article  CAS  Google Scholar 

  13. M. Tadic, D. Nikolic, M. Panjan, et al., “Magnetic properties of NiO (nickel oxide) nanoparticles: Blocking temperature and Neel temperature,” J. Alloys Compd. 647, 1061–1068 (2015). https://doi.org/10.1016/j.jallcom.2015.06.027

    Article  CAS  Google Scholar 

  14. I. V. Karpov, A. V. Ushakov, A. A. Lepeshev, et al., “Plasma-chemical reactor based on a low-pressure pulsed arc discharge for synthesis of nanopowders,” Techn. Phys. 62 (1), 168–173 (2017). https://doi.org/10.1134/S106378421701011X

    Article  CAS  Google Scholar 

  15. A. V. Ushakov, I. V. Karpov, and A. A. Lepeshev, “Influence of the oxygen concentration on the formation of crystalline phases of TiO2 during the low-pressure arc-discharge plasma synthesis,” Techn. Phys. 61 (2), 260–264 (2016). https://doi.org/10.1134/S1063784216020262

    Article  CAS  Google Scholar 

  16. A. A. Lepeshev, O. A. Bayukov, E. A. Rozhkova, et al., “Modification of the phase composition and structure of the quasicrystalline Al–Cu–Fe alloy prepared by plasma spraying,” Phys. Solid State. 57 (2), 255–259 (2015). https://doi.org/10.1134/S1063783415020249

    Article  CAS  Google Scholar 

  17. J. Tauc, Optical Properties of Solids (Academic Press Inc., New York, 1966).

    Google Scholar 

  18. M. Alagiri, S. Ponnusamy, and C. Muthamizhchelvan, “Synthesis and characterization of NiO nanoparticles by sol-gel method,” J. Mater. Sci.: Mater. Electronics 23 (3), 728–732 (2012). https://doi.org/10.1007/s10854-011-0479-6

    Article  CAS  Google Scholar 

  19. X. G. Zheng, C. N. Xu, K. Nishikubo, et al., “Finite-size effect on Néel temperature in antiferromagnetic nanoparticles,” Phys. Rev. B 72, 014464 (2005). https://doi.org/10.1103/PhysRevB.72.014464

    Article  CAS  Google Scholar 

  20. M. Asharf Shah and M. S. Al-Ghamd, “Preparation of copper (Cu) and copper oxide (Cu2O) nanoparticles under supercritical conditions,” Mater. Sci. Appl. 2, 977 (2011). https://doi.org/10.4236/msa.2011.28131

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, the Government of Krasnoyarsk Territory, the Territory Science Foundation, and OOO Seismiklab in terms of project no. 20-48-242904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Karpov.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, A.V., Karpov, I.V., Fedorov, L.Y. et al. Magnetic State of the Nickel Oxide Nanoparticles Formed in Low-Pressure Arc Discharge Plasma. Russ. Metall. 2021, 1656–1660 (2021). https://doi.org/10.1134/S0036029521130346

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521130346

Keywords:

Navigation