Skip to main content
Log in

Intermolecular Interactions between Chlorpheniramine with 1-Butanol, 1-Pentanol, and 1-Hexanol

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Density (ρ), viscosity (η), and ultrasonic velocity (U) are studied for binary liquid mixtures of chlorpheniramine with 1-butanol, 1-pentanol, and 1-hexanol at 303 K. Adiabatic compressibility (β), free length (Lf), free volume (Vf), internal pressure (πi), viscous relaxation time (τ), and Gibbs free energy (ΔG) are calculated by using the experimental data. The excess values of the above parameters (βE, \(L_{{\text{f}}}^{{\text{E}}}\), \(V_{{\text{F}}}^{{\text{E}}}\), \(\pi _{{\text{i}}}^{{\text{E}}}\), τE, and ΔGE) from their ideal values are also determined and fitted with Redlich–Kister polynomial equation. The changes in the determined parameters are interpreted in terms of the intermolecular interaction between the liquid mixtures. The significant changes in the ideal parameters and the excess parameters have confirmed the existence of the intermolecular interactions between the selected liquid system. From the observations, strength of intermolecular interaction of chlorpheniramine with the selected alcohols is in the order of 1‑butanol < 1-pentanol < 1-hexanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. Agarwal, L. Kumari, L. Sinha, et al., Braz. J. Phys. 51, 515 (2021).

    Article  CAS  Google Scholar 

  2. P. J Darolia, S. Malik, S. Garg, et al., J. Solution Chem. 50, 355 (2021).

    Article  CAS  Google Scholar 

  3. L. Palaniappan and S. Nithiyanantham, Chem. Africa. 3, 277 (2020).

    Article  CAS  Google Scholar 

  4. A. Awasthi, V. Verma, R. K. Tiwari, et al., J. Math. Chem. 58, 2291 (2020).

    Article  CAS  Google Scholar 

  5. S. Verma, S. Gahlyan, M. Rani, et al., J. Mol. Liq. 274, 300 (2019).

    Article  CAS  Google Scholar 

  6. B. Srikanth, M. Gowrisankar, S. Babu, et al., Russ. J. Phys. Chem. A 94, 2544 (2020).

    Article  CAS  Google Scholar 

  7. A. Shakila, S. Ravikumar, V. Pandiyan, et al., J. Mol. Liq. 285, 279 (2019).

    Article  CAS  Google Scholar 

  8. P. Nagababu, S. Babu, D. F. Santos, et al., Phys. Chem. Liq. 57, 689 (2019).

    Article  CAS  Google Scholar 

  9. B. Satheesh, D. Sreenu, T. Savitha Jyostna, et al., Chem. Data Collect. 28, 100448 (2020).

  10. K. Dharmalingam, K. Ramachandran, and P. Sivagurunathan, Phys. B (Amsterdam, Neth.) 139, 127 (2007).

  11. S. Thirumaran and E. Jayakumar, Indian J. Pure Appl. Phys. 47, 265 (2009).

    CAS  Google Scholar 

  12. O. Redlich and A. T. Kister, Ind. Eng. Chem. 40, 345 (1948).

    Article  Google Scholar 

  13. T. Chen, X. Feng, Y. Yin, et al., J. Solution Chem. 49, 1402 (2020).

    Article  CAS  Google Scholar 

  14. J. P. Bazile, D. Nasri, H. Hoang, et al., Int. J. Thermophys. 41, 115 (2020).

    Article  CAS  Google Scholar 

  15. E. Sampandam, T. Diriba Garbi, and Y. Alemu Abbo, Chem. Africa. 3, 1101 (2020).

    Article  CAS  Google Scholar 

  16. S. Elangovan and S. Mullainathan, Russ. J. Phys. Chem. A 90, 1006 (2016).

    Article  CAS  Google Scholar 

  17. B. Jacobson, J. Chem. Phys. 20, 927 (1952).

    Article  CAS  Google Scholar 

  18. R. Reimann and A. Heintz, J. Solution Chem. 20, 29 (1991).

    Article  CAS  Google Scholar 

  19. R. J. Fort and W. R. Moore, Trans. Faraday Soc. 62, 1112 (1966).

    Article  CAS  Google Scholar 

  20. S. Elangovan and S. Mullainathan, Russ. J. Phys. Chem. A 88, 2108 (2014).

    Article  CAS  Google Scholar 

  21. R. Rajalakshmi, S. Ravikumar, K. Sivakumar, et al., Chem. Data Collect. 24, 100299 (2019).

  22. G. P. Dubey and L. Dhingra, J. Mol. Liq. 318, 114072 (2020).

Download references

Funding

The work is supported by the Research and Technology Transfer Centre, Wollega University, Nekemte, Ethiopia. Project code WU/S1/108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Elangovan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elangovan, S., Kebede, L. & Senbeto, E.K. Intermolecular Interactions between Chlorpheniramine with 1-Butanol, 1-Pentanol, and 1-Hexanol. Russ. J. Phys. Chem. 96 (Suppl 1), S1–S7 (2022). https://doi.org/10.1134/S0036024422140084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422140084

Keywords:

Navigation