Skip to main content
Log in

BiOCl Flower Photocatalyst Heterostructured with Magnetic Carbon Nanodots Bi25FeO40–g-C3N4 for Visible-Light-Driven Efficient Photodegradation of Tetracycline Hydrochloride

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Magnetic BiOCl flowers were fabricated using a one-pot hydrothermal process by self-assemble of BiOCl nanosheets on magnetic carbon nanodots (MCDs) Bi25FeO40–g-C3N4. The photodegradation activities of the heterojunctions were detected for Tetracycline hydrochloride (TC) as antibiotic target pollutant. The degradation rate of ternary junction was detected to be 6.5 times faster than bare BiOCl. The attractive performance mainly attributed to synergistic effects resulting from the formation of npn heterojunction, especially MCDs can not only provide the high specific surface area, but suppress the recombination of photogenerated electron–hole pairs. Trapping experiments approve that h+ and \( \bullet {\kern 1pt} {\text{OH}}\) radicals were the major reactive species, meanwhile \( \bullet {\kern 1pt} {\text{O}}_{2}^{ - }\) radicals also involved in the process of TC photodegradation on BiFeCN catalysts, therefore a possible z-scheme reaction mechanism was proposed correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. J. Davies and D. Davies, Microbiol. Mol. Biol. Rev. 74, 417 (2010).

    Article  CAS  Google Scholar 

  2. G. L. French, Int. J. Antimicrob. Agents 36, S3 (2010).

    Article  CAS  Google Scholar 

  3. K. Kümmerer, Chemosphere 75, 417 (2009).

    Article  Google Scholar 

  4. R. Hirsch et al., Sci. Total Environ. 225, 108 (1999).

    Article  Google Scholar 

  5. Z. Wang, C. Li, and K. Domen, Chem. Soc. Rev. 48, 219 (2019).

    Google Scholar 

  6. Z. Zhang, L. Bai, Z. Li, et al., J. Mater. Chem. A 7, 1879 (2019).

    Google Scholar 

  7. Q. Zhang, G. Ying, C. Pan, et al., Environ. Sci. Technol. 49, 6772 (2015).

    Article  CAS  Google Scholar 

  8. M. A. Oturan and J. Aaron, Crit. Rev. Environ. Sci. Technol. 44, 2577 (2014).

    Article  CAS  Google Scholar 

  9. C. Xu, P. Ravi Anusuyadevi, C. Aymonier, et al., Chem. Soc. Rev. 48, 3392 (2019).

    Google Scholar 

  10. S. Sun, X. Yu, Q. Yang, et al., Nanoscale Adv. 1, 34 (2019).

    Article  CAS  Google Scholar 

  11. R. He, Sh. Cao, P. Zhou, and J. Yu, Chin. J. Catal. 35, 989 (2014).

    Article  CAS  Google Scholar 

  12. Ruiping Li et al., Catal. Commun. 106, 1 (2017).

    Article  Google Scholar 

  13. T. L. Silva, J. Clean. Prod. 171, 482 (2017).

    Article  Google Scholar 

  14. X. Wu, N. Liu, M. Wang, et al., ACS Nano 13, 13109 (2019).

    Article  CAS  Google Scholar 

  15. J. Yang, T. Xie, Q. Zhu, et al., J. Mater. Chem. C 8, 2579 (2020).

    Article  CAS  Google Scholar 

  16. L. Ye, Y. Su, X. Jin, et al., Environ. Sci.: Nano 1, 90 (2014).

    CAS  Google Scholar 

  17. J. Henle, P. Simon, A. Frenzel, et al., Chem. Mater. 19, 366 (2007).

    Article  CAS  Google Scholar 

  18. H. Cheng, B. Huang, and Y. Dai, Nanoscale 6, 29 (2014).

    Google Scholar 

  19. X. Zhang, Z. Ai, F. Jia, and L. Zhang, J. Phys. Chem. C 112, 747 (2008).

    Article  CAS  Google Scholar 

  20. An Huizhong et al., Rare Met. 3, 243 (2008).

  21. X. Wu, N. Liu, M. Wang, et al., ACS Nano 13, 13109 (2019).

    Article  CAS  Google Scholar 

  22. Q. Ji, Z. Xu, W. Xiang, et al., Chemosphere 253, 126751 (2020).

  23. J. Huang, W. Chen, X. Yu, et al., Colloids Surf., A 597, 124758 (2020).

  24. X. Tang, H. Liu, C. Yang, et al., Colloids Surf., A 599, 124880 (2020).

  25. S. Bao, H. Liang, C. Li, and J. Bai, J. Photochem. Photobiol. A 397, 112590 (2020).

  26. X. Qu, M. Liu, Z. Gao, et al., Appl. Surf. Sci. 506, 144688 (2020).

  27. C. Tan, G. Zhu, M. Hojamberdiev, et al., J. Clust. Sci. 24, 1115 (2013).

    Article  Google Scholar 

  28. Jingyi Bai et al., Curr. Nanosci. 11, 186 (2015).

    Article  CAS  Google Scholar 

  29. T. Xie, L. Xu, C. Liu, et al., J. Dalton Trans. 43, 2211 (2014).

    Article  CAS  Google Scholar 

  30. Shan Feng et al., J. Nanopart. Res. 19, 33 (2017).

    Article  Google Scholar 

  31. W. Ma, L. Chen, Y. Zhu, et al., Colloids Surf., A 508, 135 (2016).

    Article  CAS  Google Scholar 

  32. Y. Ni, D. Shi, B. Luo, et al., Inorg. Chem. 58, 6966 (2019).

    Article  CAS  Google Scholar 

  33. M. A. Basith, R. Ahsan, I. Zarin, and M. A. Jalil, Sci. Rep. 8 (2018).

  34. G. Tan, Y. Zheng, H. Miao, et al., J. Am. Ceram. Soc. 95, 280 (2012).

    Article  CAS  Google Scholar 

  35. W. Ong, L. Tan, Y. H. Ng, et al., Chem. Rev. 116, 7159 (2016).

    Article  CAS  Google Scholar 

  36. T. Wang, and A. T. An, J. Mater. Chem. A 8, 485 (2020).

    Article  CAS  Google Scholar 

  37. W. Guo, K. Fan, J. Zhang, and C. Xu, Appl. Surf. Sci. 447, 125 (2018).

    Article  CAS  Google Scholar 

  38. J. Di, J. Xia, S. Yin, et al., J. Mater. Chem. A 2, 5340 (2014).

    Article  CAS  Google Scholar 

  39. J. Zhu, Y. Shen, X. Yu, et al., J. Alloys Compd. 771, 309 (2019).

    Article  CAS  Google Scholar 

  40. L. Ren, S. Y. Lu, J. Z. Fang, et al., Catal. Today 281, 656 (2017).

    Article  CAS  Google Scholar 

  41. A. Kumar, A. Kumar, G. Sharma, et al., Chem. Eng. J. 334, 462 (2018).

    Article  CAS  Google Scholar 

  42. Liangliang Chu, F. Duo, M. Zhang, et al., Colloids Surf. 589, 124416 (2020).

  43. S. Huang, J. Zhong, J. Li, et al., Mater. Res. Bull. 84, 65 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was financially supported by Shandong Natural Science Foundation of China (ZR2020MB032), Innovation and Entrepreneurship Training Program for College Students in Shandong Province (S202010449058) and Binzhou University (BZXYL1801, BZXYLG2019) research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhang, H., Bian, H. et al. BiOCl Flower Photocatalyst Heterostructured with Magnetic Carbon Nanodots Bi25FeO40–g-C3N4 for Visible-Light-Driven Efficient Photodegradation of Tetracycline Hydrochloride. Russ. J. Phys. Chem. 96, 1340–1347 (2022). https://doi.org/10.1134/S0036024422060061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422060061

Keywords:

Navigation