Skip to main content
Log in

DFT Study of Adsorption of Methyl Red on the Surface of Pure, Pyrrolidine-Functionalized, Silicon- and Germanium-Doped Zigzag (6, 0) Carbon Nanotubes

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In the present study, the adsorption of methyl red on the surface of pure zigzag (6, 0) carbon nanotube was investigated using the density functional theory calculations. The role of the pyrrolidine functional group, as well as doped-silicon and germanium atoms in the adsorption of the methyl red was investigated. The natural bond orbital and the quantum theory of atoms in molecules calculations were performed for further understand of the intermolecular interactions between methyl red and the studied nanotubes. The values of adsorption energy and its negative sign indicate that the adsorption of methyl red on the functionalized and doped derivatives of zigzag (6, 0) carbon nanotubes is favorable. According to the results, the pyrrolidine functionalized zigzag (6, 0) carbon nanotube, Eads = –0.57 eV, has a better performance for methyl red adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. Robati, B. Mirza, R. Ghazisaeidi, et al., J. Mol. Liq. 216, 830 (2016).

    Article  CAS  Google Scholar 

  2. J. Lata, C. Mehta, N. Devi, et al., Int. J. Res. Adv. Technol. 5 (9), 14 (2017).

    Google Scholar 

  3. M. Ghaedi, A. Hassanzadeh, and S. Nasiri Kokhdan, J. Chem. Eng. Data 56, 2511 (2011).

    Article  CAS  Google Scholar 

  4. F. M. Machado, S. A. Carmalin, E. C. Lima, et al., J. Phys. Chem. C 120, 18296 (2016).

    Article  CAS  Google Scholar 

  5. M. Jie, Y. Fei, Z. Lu, et al., ACS Appl Mater. Interfaces 4, 5749 (2012).

    Article  Google Scholar 

  6. M. F. Machado, C. P. Bergmann, E. C. Lima, et al., Phys. Chem. Phys. 14, 11139 (2012).

    Article  CAS  Google Scholar 

  7. A. Shokuhi Rad, S. Sadeghi Shabestari, S. A. Jafari, et al., Mol. Phys. 114, 1756 (2016).

    Article  Google Scholar 

  8. M. R. Zardoost, S. Khandan, and B. Dehbandi, Low-Dim. Syst. Nanostruct. 107, 110 (2019).

    CAS  Google Scholar 

  9. M. S. H. Namin, P. Pargolghasemi, S. Alimohammadi, et al., Phys. E (Amsterdam, Neth.) 90, 204 (2017).

  10. M. A. Azam, F. M. Alias, L. W. Tack, et al., J. Mol. Graph. Model. 75, 85 (2017).

    Article  CAS  Google Scholar 

  11. P. A. Gowri Sankar, K. Udhayakumar, et al., J. Nanomater. (2013). https://doi.org/10.1155/2013/293936

  12. N. Saikia, S. Rajkhowa, and R. C. Deka, RSC Adv. 6, 94651 (2016).

    Article  CAS  Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  14. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  15. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  16. V. Barone and M. Cossi, J. Phys. Chem. A 102, 1995 (1998).

    Article  CAS  Google Scholar 

  17. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  18. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  19. F. Biegler-König, J. Comput. Chem. 22, 545 (2001).

    Article  Google Scholar 

  20. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO, Version 3.1 (Gaussian Inc., Pittsburgh, 1992).

    Google Scholar 

  21. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).

    Article  CAS  Google Scholar 

  22. R. G. Parr, L. V. Szentpaly, and S. Liu, J. Am. Chem. Soc. 121, 1922 (1999).

    Article  CAS  Google Scholar 

  23. L. M. Almeida and V. J. B. Torres, Phys. Status Solidi C 10, 1163 (2013).

    Article  CAS  Google Scholar 

  24. N. Yuan, H. Bai, Y. Ma, and Y. Ji, Phys. E (Amsterdam, Neth.) 64, 195 (2014).

  25. R. Bian, J. Zhao, and H. Fu, J. Mol. Model. 19, 1667 (2013).

    Article  CAS  Google Scholar 

  26. I. Rozas, I. Alkorta, and J. Elguero, J. Am. Chem. Soc. 122, 11154 (2000).

    Article  CAS  Google Scholar 

  27. M. Snehalatha, C. Ravikumar, I. H. Joe, et al., Spectrochim. Acta, Part A 72, 654 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Zardoost.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanafi, A., Zardoost, M.R. & Shokuhi Rad, A. DFT Study of Adsorption of Methyl Red on the Surface of Pure, Pyrrolidine-Functionalized, Silicon- and Germanium-Doped Zigzag (6, 0) Carbon Nanotubes. Russ. J. Phys. Chem. 96, 1280–1290 (2022). https://doi.org/10.1134/S0036024422060036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422060036

Keywords:

Navigation