Skip to main content
Log in

Origin of the Intrinsic Coercivity Field Variations of ε-Fe2O3

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

ε-Fe2O3 phase is recognized as an attractive material, in both technological and scientific point of view, since it can achieve very high room-temperature coercivity (10–20 kOe). In this paper, multi-phase samples Fe2O3/SiO2 with slightly different \({\text{Fe/Si}}~\) molar ratio were produced by sol–gel synthesis route. The obtained samples were characterized by various experimental techniques including XRD, TA, FTIR, and \({\text{SQUID}}\) (DC and AC magnetic measurements). It was found that both samples consisted of α-Fe2O3 and ε‑Fe2O3 phases embedded in the silica matrix, and showed very similar structural and magnetic properties, except that displayed significantly different room-temperature intrinsic coercivity field values: HciS1 = 14.3 kOe and HciS2 = 7.5 kOe. We have discussed possible origin of thus high intrinsic coercivity field variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence, and Uses (Wiley-VCH, Weinheim, 2003).

    Book  Google Scholar 

  2. P. Tartaj, M. P. Morales, T. Gonzales-Carreno, S. Veintemillas-Verdaguer, and C. J. Serna, Adv. Mater. 23, 5243 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. P. P. Freitas and H. A. Ferreira, Handbook of Magnetism and Magnetic Materials (Wiley, New York, 2007).

    Google Scholar 

  4. A. H. Lu, E. E. Salabas, and F. Schuth, Angew. Chem. Int. Ed. 46, 1222 (2002).

    Article  CAS  Google Scholar 

  5. Q. A. Pankhurst, N. T. K. Thanh, S. K. Jones, and J. Dobson, J. Phys. D 42, 224001 (2009).

    Article  CAS  Google Scholar 

  6. M. Gich, A. Frontera, J. Roig, E. Fontcuberta, N. Molius, C. Bellindo, and C. Simon, J. Nanotechnol. 17, 687 (2006).

    Article  CAS  Google Scholar 

  7. J. Tucek, R. Zboril, A. Namai, and S. I. Ohkoshi, Chem. Mater. 22, 6483 (2010).

    Article  CAS  Google Scholar 

  8. S. A. Wolf, A. Y. Chtchelkanova, and D. M. Treger, IBM J. Res. Dev. 50, 101 (2006).

    Article  CAS  Google Scholar 

  9. M. Gich, J. Gazquez, A. Roig, A. Crespi, J. Fontcuberta, J. C. Idrobo, S. J. Pennycook, M. Varela, V. Skumryev, and M. Varela, Appl. Phys. Lett. 96, 112508 (2010).

    Article  CAS  Google Scholar 

  10. M. Kurmoo, J. L. Rehspringer, A. Hutlova, C. Dorleans, S. Vilminot, C. Estournes, and D. Niznansky, Chem. Mater. 17, 1106 (2005).

    Article  CAS  Google Scholar 

  11. K. C. Barick, B. C. S. Varaprasad, and D. Bahadur, J. Non-Cryst. Solids 356, 153 (2010).

    Article  CAS  Google Scholar 

  12. D. A. Balaev, A. A. Dubrovskiy, K. A. Shayhhutdinov, O. A. Baykov, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 114, 347 (2013).

    Article  CAS  Google Scholar 

  13. V. N. Nikolic, M. Tadic, M. Panjan, L. Kopanja, N. Cvjeticanin, and V. Spasojevic, Ceram. Int. 43, 3147 (2017).

    Article  CAS  Google Scholar 

  14. M. Popovici, M. Gich, D. Niznansky, A. Roig, C. Savii, L. Casas, E. Molins, C. Enache, J. Sort, S. Brion, G. Chouteau, and E. Nogues, Chem. Mater. 25, 5542 (2004).

    Article  CAS  Google Scholar 

  15. X. Ye, D. Lin, Z. Jiao, and L. Zhang, J. Phys. D 31, 2739 (1998).

    Article  CAS  Google Scholar 

  16. B. Pacewsk and M. Keshr, Thermochim. Acta 12, 73 (2002).

    Article  Google Scholar 

  17. A. S. Teja and P. Y. Koh, Prog. Cryst. Growth Charact. 55, 22 (2009).

    Article  CAS  Google Scholar 

  18. I. K. Battisha, H. H. Afify, and M. Ibrahim, J. Magn. Magn. Mater. 306, 211 (2006).

    Article  CAS  Google Scholar 

  19. M. Alagiri and B. A. H. Sharifah, J. Sol-Gel Sci. Technol. 74, 783 (2015).

    Article  CAS  Google Scholar 

  20. L. Machala, J. Tucek, and R. Zboril, Chem. Mater. 14, 3255 (2011).

    Article  CAS  Google Scholar 

  21. M. Tadic, V. Spasojevic, V. Kusigerski, D. Markovic, and M. Remskar, Scripta Mater. 58, 703 (2008).

    Article  CAS  Google Scholar 

  22. D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, and M. Muhammed, J. Magn. Magn. Mater. 225, 30 (2001).

    Article  CAS  Google Scholar 

  23. P. Brazda, D. Nizansky, J. L. Rehspringer, and J. Poltierova-Vejpravova, J. Sol-Gel Sci. Technol. 2, 78 (2009).

    Article  CAS  Google Scholar 

  24. I. K. Battisha, H. H. Afify, and M. Ibrahim, J. Magn. Magn. Mater. 306, 211 (2006).

    Article  CAS  Google Scholar 

  25. S. S. Yakuskhin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, K. A. Shaikhutdinov, M. A. Kazakova, G. A. Bukhtiyarova, O. N. Martiyanov, and O. A. Bayukov, J. Supercond. Novel Magn. 20 (2), 1 (2017).

    Google Scholar 

  26. D. A. Balaev, S. S. Yakushkin, A. A. Dubrovskii, K. A. Bukhtiyarova, K. A. Shaikhutdinova, and O. N. Martyanov, Tech. Phys. Lett. 42, 347 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Education, Science and Technology Development, Republic of Serbia (project no. III 45015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta N. Nikolić.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolić, V.N., Milić, M.M., Zdravković, J.D. et al. Origin of the Intrinsic Coercivity Field Variations of ε-Fe2O3. Russ. J. Phys. Chem. 93, 377–383 (2019). https://doi.org/10.1134/S0036024419020316

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419020316

Keywords:

Navigation