Skip to main content
Log in

Radio Brightness Contrasts of Aqueous Solutions of Alkali Metal Nitrates in the Millimeter Spectral Range

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Using a high-sensitivity radiometer at a frequency of 61.2 GHz (millimeter spectral range), the radio brightness characteristics of aqueous solutions of alkali metal nitrates (Li+, Na+, K+, Cs+) have been studied under laboratory conditions. Radio brightness effects of different sign have been observed for solutions with weakly hydrated (Cs+, K+) and more strongly hydrated (Li+, Na+) ions. The radio brightness parameters have been compared with calculated data from dielectric spectra in the millimeter range. It has been shown that the radiation of solutions is associated with dipole and ion hydration contributions to the dielectric loss, and the latter should be considered even in the millimeter range. For the studied systems, agreement between the experimental and calculated radio brightness parameters in the initial concentration range has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. M. Shutko, Microwave Radiometry of the Water Surface (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  2. G. K. Korotaev, V. V. Pustovoitenko, and L. N. Radaikina, Ekol. Bezopasn. Pribr. Shel. Zon 11, 198 (2004).

    Google Scholar 

  3. I. N. Sadovskii, E. A. Sharkov, A. V. Kuz’min, et al., Issled. Zemli Kosmos. 6, 79 (2014). https://doi.org/10.7868/S0205961414060050

    Article  Google Scholar 

  4. A. K. Lyashchenko, I. M. Karataeva, and V. S. Dunyashev, Russ. J. Phys. Chem. A 93, 682 (2019). https://doi.org/10.1134/S0036024419040204

    Article  CAS  Google Scholar 

  5. A. K. Lyashchenko and I. M. Karataeva, Russ. J. Inorg. Chem. 62, 128 (2017). https://doi.org/10.1134/S0036023617010107

    Article  CAS  Google Scholar 

  6. A. K. Lyashchenko, A. Yu. Efimov, V. S. Dunyashev, and I. M. Karataeva, Russ. J. Inorg. Chem. 65, 241 (2020). https://doi.org/10.1134/S0036023620020096

    Article  CAS  Google Scholar 

  7. A. K. Lyashchenko, A. Yu. Efimov, V. S. Dunyashev, and I. A. Efimenko, Russ. J. Inorg. Chem. 65, 1776 (2020). https://doi.org/10.1134/S003602362011011X

    Article  Google Scholar 

  8. Z. A. Filimonova, A. S. Lileev, and A. K. Lyashchenko, Russ. J. Inorg. Chem. 47, 1890 (2002).

    Google Scholar 

  9. J. Barthel, R. Buchner, and M. Munsterer, Electrolyte Data Collection, part 2, Dielectric Properties of Water and Aqueous Electrolyte Solutions (DECHEMA, Chemistry Data Series, 1995).

  10. Yu. M. Poplavko, Physics of Dielectrics (Vishcha shkola, Kiev, 1980) [in Russian].

  11. K. S. Cole and R. H. Cole, J. Chem. Phys. 10, 98 (1942). https://doi.org/10.1063/1.1723677

    Article  CAS  Google Scholar 

  12. S. Havriliak and S. Negami, J. Polym. Sci. 14, 99 (1966). https://doi.org/10.1002/polc.5070140111

    Article  Google Scholar 

  13. V. V. Shcherbakov, V. I. Ermakov, and Yu. M. Artemkina, Russ. J. Electrochem. 53, 1301 (2017). https://doi.org/10.1134/S1023193517120102

    Article  CAS  Google Scholar 

  14. V. M. M. Lobo and J. L. Quaresma, Handbook of Electrolyte Solutions (Elsevier, Amsterdam, 1989).

    Google Scholar 

  15. V. S. Dunyashev, and A. Yu. Efimov, Program for Calculating the Electrical and Optical Properties of Solutions DielRk, RU2020614440, ISSN 2313-7487 (Moscow, 2020) [in Russian].

  16. A. S. Koz’min, Ext. Abstract of Cand. Sci. (Phys.-Mat.) Diss., Volgograd, 2011.

  17. A. K. Lyashchenko, I. M. Karataeva, A. S. Kozmin, and O. V. Betskii, Dokl. Phys. Chem. 462, 127 (2015).

    Article  CAS  Google Scholar 

  18. I. A. Briling, Nitrate Pollution of Groundwater by Fertilizers (Moscow, 1985) [in Russian].

    Google Scholar 

  19. V. P. Zakutin, D. A. Fetisenko, and Z. N. Panteleeva, et al., Water Res. 21, 374 (1944).

    Google Scholar 

  20. O. V. Kletskina and I. I. Minkevich, Vestn. Perm. Univ. Geol. 4, 8 (2013).

    Google Scholar 

  21. A. K. Lyashchenko, Proceedings of the 3rd All-Russian Conference on Physics of Aqueous Solutions (MESOL, Moscow, 2000).

  22. A. K. Lyashchenko, Biomed. Radioel. 8–9, 62 (2007).

    Google Scholar 

  23. A. Kh. Tambiev, N. N. Kirkorov, and O. V. Betskii, Millimeter Waves and Photosynthetic Organisms (Radiotekhnika, Moscow, 2003) [in Russian].

    Google Scholar 

  24. O. V. Betskii, V. V. Kislov, and N. N. Lebedeva, Millimeter Waves and Living Systems (Sains-Press, 2004) [in Russian].

    Google Scholar 

Download references

Funding

The work was supported by the Ministry of Education and Science of the Russian Federation in the framework of the State assignment of IGIC RAS and partially supported by the Russian foundation of Basic Research (project no. 19-03-00033a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Lyashchenko.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyashchenko, A.K., Efimov, A.Y. & Dunyashev, V.S. Radio Brightness Contrasts of Aqueous Solutions of Alkali Metal Nitrates in the Millimeter Spectral Range. Russ. J. Inorg. Chem. 67, 519–523 (2022). https://doi.org/10.1134/S003602362204012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362204012X

Keywords:

Navigation