Skip to main content
Log in

First-Principles Calculations of Structural, Thermodynamic, and Elastic Properties of Lead Chalcogenides PbX (X = S, Se, and Te) in NaCl (B1) Phase

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The structural, thermodynamic, and elastic properties of the cubic type B1 (NaCl) phase for the lead chalcogenides PbS, PbSe, and PbTe were studied using DFT calculations. The exchange-correlation functional used in this study is the generalized gradient approximation associate by Perdew–Burke–Ernzerhof (GGA-PBE). The structural properties of these compounds have been calculated and their values have been found in good agreement with the experimental results. The stability of these materials is discussed on the basis of the calculated elastic constants Cij, in which the results indicate that the studied compounds are stable and the estimated values are in excellent agreement with the experimental data. The thermodynamic properties of PbX materials have also been evaluated. The influence of temperature and pressure upon the bulk modulus (B), expansion coefficients (α), and heat capacities Cv and Cp were estimated and discussed. The heat capacity Cv reaches up to 49 J/mol K for different materials studied. The influence of temperature on the Cp was also investigated for different pressures (from 0 to 12 GPa) and the results obtained were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Khokhlov, Lead Chalcogenides: Physics and Applications (Boca Raton: CRC Press, 2002).

    Google Scholar 

  2. S. V. Ovsyannikov, V. V. Shchennikov, S. V. Popova, and A. Y. Derevskov, Phys. Status Solidi B 235, 521 (2003). https://doi.org/10.1002/pssb.200301614

    Article  CAS  Google Scholar 

  3. Y. Pei, A. LaLonde, S. Iwanaga, and G. J. Snyder, Energy Environ. Sci. 4, 2085 (2011). https://doi.org/10.1039/c0ee00456a

    Article  CAS  Google Scholar 

  4. S. Wang, J. Zhang, Y. Zhang, et al., Inorg. Chem. 52, 8638 (2013). https://doi.org/10.1021/ic400801s

    Article  CAS  PubMed  Google Scholar 

  5. R. S. Allgaier, Phys. Rev. 112, 828(1958). https://doi.org/10.1103/PhysRev.112.828

    Article  CAS  Google Scholar 

  6. R. S. Allgaier, J. Appl. Phys. 32, 2185(1961). https://doi.org/10.1063/1.1777039

    Article  CAS  Google Scholar 

  7. J. R. Burke, B. Houston, and H.T. Savage, Phys. Rev. B 2, 1977 (1970). https://doi.org/10.1103/PhysRevB.2.1977

    Article  Google Scholar 

  8. K. Hummer, A. Gruneis, and G. Kresse, Phys. Rev. B 75, 195211 (2007). https://doi.org/10.1103/PhysRevB.75.195211

    Article  CAS  Google Scholar 

  9. H. Preier, Appl. Phys. 20, 189 (1979). https://doi.org/10.1007/BF00886018

    Article  CAS  Google Scholar 

  10. H. Zogg, A. Fach, C. Maissen, et al., Opt. Eng. 33, 1440 (1994). https://doi.org/10.1117/12.165808

    Article  CAS  Google Scholar 

  11. M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Springer Ser. Solid-State Sci., Vol. 75 (Springer, Berlin, Heidelberg, 1988).

  12. S. H. Wei and A. Zunger, Phys. Rev. B 55, 13605 (1997). https://doi.org/10.1103/PhysRevB.55.13605

    Article  CAS  Google Scholar 

  13. O. K. Andersen, Phys. Rev. B 12, 3060 (1975). https://doi.org/10.1103/PhysRevB.12.3060

    Article  CAS  Google Scholar 

  14. D. Singh, H. Krakauer, and C. S. Wang, Phys. Rev. B 34, 8391 (1986). https://doi.org/10.1103/PhysRevB.34.8391

    Article  CAS  Google Scholar 

  15. W. Kohn and L. J. Sham, Phys. Rev. B 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  16. R. Maizi, A.-G. Boudjahem, and M. Boulbazine, Russ. J. Phys. Chem. A 93, 2726 (2019). https://doi.org/10.1134/S0036024419130181

    Article  Google Scholar 

  17. X. Gonze, J. M. Beuken, R. Caracas, et al., Comput. Mater. Sci. 25, 478 (2002). https://doi.org/10.1016/S0927-0256(02)00325-7

    Article  Google Scholar 

  18. ABINIT. http://www.abinit.org.

  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  20. A. S. Zyubin, T. S. Zyubina, Yu. A. Dobrovol’skii, et al., Russ. J. Inorg. Chem. 58, 1489 (2013). https://doi.org/10.1134/S0036023613120255

    Article  CAS  Google Scholar 

  21. T. S. Zyubina and T. S. Dzhabiev, Russ. J. Inorg. Chem. 63, 1461 (2018). https://doi.org/10.1134/S0036023618110220

    Article  CAS  Google Scholar 

  22. M. Lach-hab, D. A. Papaconstantopoulos, and M. J. Mehl, J. Phys. Chem. Solids. 63, 833 (2002). https://doi.org/10.1016/S0022-3697(01)00237-2

    Article  CAS  Google Scholar 

  23. H. J. Monkhorst and J. D. Park, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  24. J. R. Macdonald and D. R. Powell, J. Res. Natl. Bur. Stand. A 75, 441 (1971).

    Article  CAS  Google Scholar 

  25. F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1947). https://doi.org/10.1073/pnas.30.9.244

    Article  Google Scholar 

  26. O. Madelung, M. Shulz, H. Weiss (Eds.), Numerical Data and Functional Relationships in Science and Technology, Landolt-Bornstei, New Series, Vol. 17 (Springer, Berlin, 1983).

  27. O. Madelung, U. Rossler, M. Schulz (Eds.), Semiconductors: Group IV Elements, IV–IV and III–IV Compounds, Landolt-Bornstein, New series, Group III, Vol. 41, Pt. A (Springer-Verlag, Berlin, 2005).

  28. Y. Bencherif, A. Boukra, A. Zaoui, and M. Ferhat, Mater. Chem. Phys. 126, 707 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.056

    Article  CAS  Google Scholar 

  29. Z. Wu, R. E. Cohen, Phys. Rev. B 73, 235116 (2006). https://doi.org/10.1103/PhysRevB.73.235116

    Article  CAS  Google Scholar 

  30. M. Lach-hab, D. A. Papaconstantopoulos, and M. J. Mehl, J. Phys. Chem. Solids. 63, 833 (2002). https://doi.org/10.1016/S0022-3697(01)00237-2

    Article  CAS  Google Scholar 

  31. M. J. Mehl, J. E. Osburn, D. A. Papaconstantopoulos, and B. M. Klein, Phys. Rev. B 41, 10311 (1990).  https://doi.org/10.1103/physrevb.41.10311

    Article  CAS  Google Scholar 

  32. M. J. Mehl, Phys. Rev B 47, 2493 (1993). https://doi.org/10.1103/PhysRevB.47.2493

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Algerian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Maizi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maizi, R., Ksouri, R., Boudjahem, AG. et al. First-Principles Calculations of Structural, Thermodynamic, and Elastic Properties of Lead Chalcogenides PbX (X = S, Se, and Te) in NaCl (B1) Phase. Russ. J. Inorg. Chem. 66, 2084–2090 (2021). https://doi.org/10.1134/S0036023621140023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621140023

Keywords:

Navigation