Skip to main content
Log in

Textured Barium Hexaferrite Films on Silicon Substrates with Aluminum Oxide and Titanium Oxide Barrier Layers

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The possibility of synthesizing textured barium hexaferrite films on silicon wafers with Ti, Al2O3/Ti, or Al2O3/TiO2 barrier layers was studied. X-ray diffraction (XRD) showed that, after crystallization annealing, the hexaferrite phase with the (00l) preferred orientation was formed only when there was contact between BaFe12O19 and Al2O3. The hexaferrite microstructure in these samples, according to atomic force microscopy (AFM), is represented by rounded grains, which are typical of films where the hexagonal axis is perpendicular to the surface plane. Titanium in a BaFe12O19/Al2O3/Ti sample was partially oxidized during the synthesis. This process and the associated phase transformations in TiO2 are assumed to induce mechanical stress in the structure and, as a consequence, the formation of macroscopic defects (bulges). Complete pre-oxidation of the titanium film produced a textured BaFe12O19 structure without macroscopic defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. C. Pullar, Prog. Mater. Sci. 57, 1191 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  CAS  Google Scholar 

  2. C. Fernandez De Julian, C. Sangregorio, J. de la Figuera, et al., J. Phys. D: Appl. Phys. 54, 153001 (2021). https://doi.org/10.1088/1361-6463/abd272

    Article  CAS  Google Scholar 

  3. R. Jotania, AIP. Conf. Proc. 1621, 596 (2014). https://doi.org/10.1063/1.4898528

    Article  CAS  Google Scholar 

  4. V. G. Kostishin, D. N. Chitanov, A. G. Nalogin, et al., Russ. J. Inorg. Chem. 61, 279 (2016). https://doi.org/10.1134/S0036023616030116

    Article  CAS  Google Scholar 

  5. V. V. Korovushkin, A. V. Trukhanov, M. N. Shipko, et al., Russ. J. Inorg. Chem. 64, 574 (2019). https://doi.org/10.1134/S0036023619050115

    Article  CAS  Google Scholar 

  6. V. V. Korovushkin, A. V. Trukhanov, V. G. Kostishin, et al., Phys. Solid State 62, 891 (2020). https://doi.org/10.1134/S1063783420050145

    Article  CAS  Google Scholar 

  7. H. Li, L. Zheng, D. Deng, et al., J. Alloys Compd. 862, 158638 (2021). https://doi.org/10.1016/j.jallcom.2021.158638

    Article  CAS  Google Scholar 

  8. H. K. Satyapal, R. K. Singh, S. S. Kumar, et al., Mater. Today Proc. 44, 1833 (2021).

  9. K. S. Martirosyan, E. Galstyan, S. M. Hossain, et al., Mater. Sci. Eng. B 176, 8 (2011). https://doi.org/10.1016/j.mseb.2010.08.005

    Article  CAS  Google Scholar 

  10. V. K. Chakradhary and M. J. Akhtar, Composites B 183, 107667 (2020). https://doi.org/10.1016/j.compositesb.2019.107667

  11. X. Zhang, Y. Zhang, S. Cao, et al., Mater. Lett. 248, 24 (2019). https://doi.org/10.1016/j.matlet.2019.03.139

    Article  CAS  Google Scholar 

  12. B. K. O’Neil and J. L. Young, IEEE Antennas and Propagation Society International Symposium, San Diego, 2008. https://doi.org/10.1109/APS.2008.4619493

  13. S. G. Wang, S. D. Yoon, and C. Vittoria, J. Appl. Phys. 92, 6728 (2002). https://doi.org/10.1063/1.1517749

    Article  CAS  Google Scholar 

  14. E. D. Solovyova, M. L. Calzada, and A. G. Belous, J. Sol-Gel Sci. Technol. 75, 215 (2015). https://doi.org/10.1007/s10971-015-3692-6

    Article  CAS  Google Scholar 

  15. H. Tang, W. Zhang, B. Peng, and W. Zhang, Thin Solid Films 518, 3342 (2010). https://doi.org/10.1016/j.tsf.2010.01.038

    Article  CAS  Google Scholar 

  16. S. Yong An, S. Won Lee, I.-B. Shim, and C. Sung Kim, Phys. Status Solidi A 189, 893 (2002). https://doi.org/10.1002/1521-396X(200202)189:3<893::AID-PSSA893>3.0.CO;2-O

    Article  Google Scholar 

  17. S. Verma, S. Mahadevan, C. Pahwa, et al., J. Supercond. Nov. Magn. 33, 2507 (2020). https://doi.org/10.1007/s10948-020-05494-2

    Article  CAS  Google Scholar 

  18. C. Velez, J. Ewing, S. Hwangbo, et al., EEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Ann Arbor. Michigan, 16–18 July 2018.https://doi.org/10.1109/IMWS-AMP.2018.8457152

  19. S. M. Masoudpanah, S. A. Seyyed Ebrahimi, and C. K. Ong, J. Magn. Magn. Mater. 324, 2894 (2012). https://doi.org/10.1016/j.jmmm.2012.04.034

    Article  CAS  Google Scholar 

  20. Z. Xu, Z. Lan, K. Sun, et al., J. Alloys Compd. 575, 257 (2013). https://doi.org/10.1016/j.jallcom.2013.04.084

    Article  CAS  Google Scholar 

  21. V. G. Kostishin, A. Yu. Mironovich, R. I. Shakirzyanov, et al., Usp. Prikl. Fis. 8, 370 (2020).

    CAS  Google Scholar 

  22. S. M. Masoudpanah, S. A. Seyyed Ebrahimi, and C. K. Ong, J. Magn. Magn. Mater. 324, 2654 (2012). https://doi.org/10.1016/j.jmmm.2012.03.040

    Article  CAS  Google Scholar 

  23. Z. Xu, Z. Lan, K. Sun, et al., Appl. Surf. Sci. 271, 362 (2013). https://doi.org/10.1016/j.apsusc.2013.01.203

    Article  CAS  Google Scholar 

  24. F. M. Mwema, O. P. Oladijo, S. A. Akinlabi, and E. T. Akinlabi, J. Alloys Compd. 747, 306 (2018). https://doi.org/10.1016/j.jallcom.2018.03.006

    Article  CAS  Google Scholar 

  25. A. M. Glezer and N. A. Shurygina, Amorphous Nanocrystalline Alloys (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  26. N. N. Shams, M. Matsumoto, and A. Morisako, IEEE Trans. Magn. 40, 2955 (2004). https://doi.org/10.1109/TMAG.2004.829276

    Article  CAS  Google Scholar 

  27. A. Morisako, N. N. Shams, Y. Miura, et al., J. Magn. Magn. Mater. 272276, 2191 (2004). https://doi.org/10.1016/j.jmmm.2003.12.632

    Article  CAS  Google Scholar 

  28. P. Kulik, C. Yu, and A. Sokolov, Scr. Mater. 188, 190 (2020). https://doi.org/10.1016/j.scriptamat.2020.07.041

    Article  CAS  Google Scholar 

  29. V. V. Pan’kov, A. I. Stognii, V. D. Koshevar, and V. A. Ketsko, Inorg. Mater. 44, 1022 (2008). https://doi.org/10.1134/S0020168508090203

    Article  CAS  Google Scholar 

  30. V. G. Kostishin, A. Y. Mironovich, A. V. Timofeev, et al., Russ. J. Inorg. Chem. 66, 603 (2021). https://doi.org/10.1134/S003602362104015X

    Article  CAS  Google Scholar 

  31. G. Abadias, E. Chason, J. Keckes, et al., J. Vac. Sci. Technol. A 36, 020801 (2018). https://doi.org/10.1116/1.5011790

    Article  CAS  Google Scholar 

  32. W. Jiang, D. Xu, S. Yao, et al., Mater. Sci. Semicond. Proc. 43, 222 (2016). https://doi.org/10.1016/j.mssp.2015.12.020

    Article  CAS  Google Scholar 

  33. D. Dergez, J. Schalko, A. Bittner, and U. Schmid, Appl. Surf. Sci. 284, 348 (2013). https://doi.org/10.1016/j.apsusc.2013.07.104

    Article  CAS  Google Scholar 

  34. V. Chawla, R. Jayaganthan, A. K. Chawla, and R. Chandra, Mater. Chem. Phys. 111, 414 (2008). https://doi.org/10.1016/j.matchemphys.2008.04.048

    Article  CAS  Google Scholar 

  35. W. D. Townes, J. H. Fang, and A. J. Perrotta, Z. Kristallogr. 125, 437 (1967). https://doi.org/10.1524/ZKRI.1967.125.125.437

    Article  CAS  Google Scholar 

  36. E. Gemelli and N. H. A. Camargo, Revista Materia 12, 525 (2007). https://doi.org/10.1590/S1517-70762007000300014

    Article  Google Scholar 

  37. D. V. Pavlenko, D. V. Tkach, S. M. Danilova-Tretyak, and L. E. Evseeva, J. Eng. Phys. Thermophys. 90, 685 (2017). https://doi.org/10.1007/s10891-017-1616-8

    Article  CAS  Google Scholar 

  38. R. K. Kirby, J. Res. Natl. Bur. Stand. A: Phys. Chem. 71, 363 (1967). https://dx.doi.org/10.6028%2Fjres.071A.041

    Article  CAS  Google Scholar 

  39. V. A. Fedorov, A. D. Berezner, A. I. Beskrovnyi, et al., Phys. Solid State 60, 705 (2018). https://doi.org/10.1134/S1063783418040091

    Article  CAS  Google Scholar 

  40. V. Yu. Kolosov, K. L. Shvamm, R. V. Gainutdinov, and A. L. Tolstikhina, Bull. Russ. Acad. Sci. Phys. 71, 1442 (2007). https://doi.org/10.3103/S1062873807100280

    Article  Google Scholar 

  41. V. G. Kostishin, A. Yu. Mironovich, A. V. Timofeev, et al., Semiconductors 55, 308 (2021). https://doi.org/10.1134/S106378262103012X

    Article  CAS  Google Scholar 

  42. E. P. Lokshin and T. A. Sednev, Russ. J. Gen. Chem. 81, 1749 (2011). https://doi.org/10.1134/S1070363211090015

    Article  CAS  Google Scholar 

  43. J. Huberty and H. Xu, J. Solid State Chem. 181, 508 (2008). https://doi.org/10.1016/j.jssc.2007.12.015

    Article  CAS  Google Scholar 

  44. M. P. Gonullu and H. Ates, Superlattices Microstruct. 147, 106699 (2020). https://doi.org/10.1016/j.spmi.2020.106699

    Article  CAS  Google Scholar 

  45. J. S. Mangum, O. Agirseven, J. E. S. Haggerty, et al., J. Non-Cryst. Solids 505, 109 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.10.049

    Article  CAS  Google Scholar 

  46. A. Azarniya, A. Azarniya, H. R. M. Hosseini, and A. Simchi, Mater. Charact. 103, 125 (2015). https://doi.org/10.1016/j.matchar.2015.03.030

    Article  CAS  Google Scholar 

  47. Y. Ohya, S. Yamamoto, T. Ban, et al., J. Eur. Ceram. Soc. 37, 1673 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.11.037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Mironovich.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostishin, V.G., Mironovich, A.Y., Timofeev, A.V. et al. Textured Barium Hexaferrite Films on Silicon Substrates with Aluminum Oxide and Titanium Oxide Barrier Layers. Russ. J. Inorg. Chem. 66, 1802–1810 (2021). https://doi.org/10.1134/S0036023621120093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621120093

Keywords:

Navigation