Skip to main content
Log in

Inclusion compounds of cucurbit[n]urils with metal complexes

  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new class of supramolecular compounds—inclusion compounds of metal complexes encapsulated in organic macrocyclic cavitands cucurbit[n]urils (CB[n], C6n H6n N4n O2n , n = 7−10)—has been surveyed. A unique combination of a rather rigid hydrophobic intramolecular cavity and negatively charged portals favors the formation of stable host-guest compounds. Basic methods of synthesis of inclusion compounds of CB[n] with metal complexes have been reported, and the structures of the resulting products isolated as crystals and characterized by X-ray crystallography have been considered. The effect of encapsulation on the geometric and spectral characteristics of the complexes and their redox properties has been traced. It has been shown that encapsulation in CB[n] can lead to a change in the reactivity of the complexes in thermolysis and isomerization and aquation reactions. Encapsulation of biologically active metal complexes in CB[n] is a promising strategy for designing new-generation prolonged-action pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspective (VCH, Weinheim, 1995; Nauka, Novosibirsk, 1998).

    Book  Google Scholar 

  2. I. Lippold, H. Görls, and W. Plass, Eur. J. Inorg. Chem., 1487 (2007).

  3. Y. Chen, H.-L. Chen, Q.-C. Yang, et al., J. Chem. Soc., Dalton Trans., 629 (1999).

  4. N. J. Forrow and S. J. Walters, Biosens. Bioelectron. 19, 763 (2004).

    Article  CAS  Google Scholar 

  5. B. Tang, G. Y. Zhang, Y. Liu, and F. Han, Anal. Chim. Acta 459, 83 (2002).

    Article  CAS  Google Scholar 

  6. N. J. Wheate, D. P. Buck, A. I. Day, and J. G. Collins, J. Chem. Soc., Dalton Trans., 451 (2006).

  7. T. Utsuki, H. Brem, J. Pitha, et al., J. Control. Release 40, 251 (1996).

    Article  CAS  Google Scholar 

  8. A. E. Kaifer, Acc. Chem. Res. 32, 62 (1999).

    Article  CAS  Google Scholar 

  9. R. Behrend, E. Meyer, and F. Rusche, Justus Liebigs Ann. Chem. 339, 1 (1905).

    Article  Google Scholar 

  10. W. A. Freeman, W. L. Mock, and N.-Y. Shih, J. Am. Chem. Soc. 103, 7367 (1981).

    Article  CAS  Google Scholar 

  11. J. Kim, I.-S. Jung, S.-Y. Kim, et al., J. Am. Chem. Soc. 122, 540 (2000).

    Article  CAS  Google Scholar 

  12. A. I. Day, A. P. Arnold, R. J. Blanch, and B. Snushall, J. Org. Chem. 66, 8094 (2002).

    Article  Google Scholar 

  13. J. W. Lee, S. Samal, N. Selvapalam, et al., Acc. Chem. Res. 36, 621 (2003).

    Article  CAS  Google Scholar 

  14. A. R. Mustafina, V. V. Skripacheva, and A. I. Konovalov, Usp. Khim. 76, 979 (2007).

    Google Scholar 

  15. W. L. Mock and N.-Y. Shih, J. Org. Chem. 51, 4440 (1986).

    Article  CAS  Google Scholar 

  16. Y. M. Jeon, J. Kim, D. Whang, and K. Kim, J. Am. Chem. Soc. 118, 9790 (1996).

    Article  CAS  Google Scholar 

  17. J. Heo, J. Kim, D. Whang, and K. Kim, Inorg. Chim. Acta 297, 307 (2000).

    Article  CAS  Google Scholar 

  18. J. Heo, S.-Y. Kim, D. Whang, and K. Kim, Angew. Chem., Int. Ed. Engl. 38, 641 (1999).

    Article  CAS  Google Scholar 

  19. D. Whang, J. Heo, J. H. Park, and K. Kim, Angew. Chem., Int. Ed. Engl. 37, 78 (1998).

    Article  CAS  Google Scholar 

  20. O. A. Geras’ko, A. V. Virovets, D. G. Samsonenko, et al., Izv. Akad. Nauk, Ser. Khim., No. 3, 562 (2003).

  21. M. N. Sokolov, T. V. Mitkina, O. A. Gerasko, et al., Z. Anorg. Allg. Chem. 629, 2440 (2003).

    Article  CAS  Google Scholar 

  22. D. G. Samsonenko, J. Lipkowski, O. A. Gerasko, et al., Eur. J. Inorg. Chem., 2380 (2002).

  23. O. A. Gerasko, E. A. Mainicheva, M. I. Naumova, et al., Inorg. Chem. 47, 8869 (2008).

    Article  CAS  Google Scholar 

  24. E. A. Mainicheva, O. A. Geras’ko, L. A. Sheludyakova, et al., Izv. Akad. Nauk, Ser. Khim. 55, 261 (2006).

    Google Scholar 

  25. O. A. Gerasko, E. A. Mainicheva, D. Y. Naumov, et al., Inorg. Chem. 44, 4133 (2005).

    Article  CAS  Google Scholar 

  26. V. P. Fedin, A. V. Virovets, D. N. Dybtsev, et al., Inorg. Chim. Acta 304, 301 (2000).

    Article  CAS  Google Scholar 

  27. S. Y. Jon, N. Selvapalam, D. H. Oh, et al., J. Am. Chem. Soc. 125, 10186 (2003).

    Article  CAS  Google Scholar 

  28. K. Kim, N. Selvapalam, H. K. Young, et al., Chem. Soc. Rev. 36, 267 (2007).

    Article  CAS  Google Scholar 

  29. P. Germain, J. M. Letoffe, M. P. Merlin, and H. J. Buschmann, Thermochim. Acta 315, 87 (1998).

    Article  CAS  Google Scholar 

  30. P. Cintas, J. Incl. Phenom. Molec. Rec. Chem. 17, 205 (1994).

    Article  CAS  Google Scholar 

  31. W. L. Mock, Comprehensive Supramolecular Chemistry, Ed. by F. Vögtle (Pergamon, Oxford, 1996), p. 477.

    Google Scholar 

  32. K. Kim, Chem. Soc. Rev. 31, 96 (2002).

    Article  CAS  Google Scholar 

  33. J. Lagona, P. Mukhopadhyay, S. Chakrabarti, and L. Isaacs, Angew. Chem., Int. Ed. Engl. 44, 4844 (2005).

    Article  CAS  Google Scholar 

  34. L. Isaacs, J. Chem. Soc., Chem. Commun., 619 (2009).

  35. O. A. Geras’ko, D. G. Samsonenko, and V. P. Fedin, Usp. Khim. 71, 840 (2002).

    Google Scholar 

  36. O. A. Gerasko, M. N. Sokolov, and V. P. Fedin, Pure Appl. Chem. 76, 1633 (2004).

    Article  CAS  Google Scholar 

  37. O. A. Geras’ko and V. P. Fedin, Ross. Nanotekhnol. 2(5–6), 61 (2007).

    Google Scholar 

  38. S.-Y. Kim, I.-S. Jung, E. Lee, et al., Angew. Chem., Int. Ed. Engl. 40, 2119 (2001).

    Article  CAS  Google Scholar 

  39. T. V. Mit’kina, D. Yu. Naumov, O. A. Geras’ko, et al., Izv. Akad. Nauk, Ser. Khim., No. 11, 2414 (2004).

  40. T. V. Mit’kina, D. Yu. Naumov, N. V. Kurat’eva, et al., Izv. Akad. Nauk, Ser. Khim., No. 1, 25 (2006).

  41. T. V. Mitkina, M. N. Sokolov, D. Y. Naumov, et al., Inorg. Chem. 45, 6950 (2006).

    Article  CAS  Google Scholar 

  42. T. V. Mitkina, N. F. Zakharchuk, D. Y. Naumov, et al., Inorg. Chem. 47, 6748 (2008).

    Article  CAS  Google Scholar 

  43. E. A. Kovalenko, T. V. Mit’kina, O. A. Geras’ko, et al., Izv. Akad. Nauk, Ser. Khim., No. 11, 2019 (2010).

  44. E. A. Kovalenko, T. V. Mit’kina, O. A. Geras’ko, et al., Russ. J. Coord. Chem. 37, 137 (2011).

    Article  CAS  Google Scholar 

  45. S. L. Hart, R. I. Haines, A. Decken, and D. Wagner, Inorg. Chim. Acta 362, 4145 (2009).

    Article  CAS  Google Scholar 

  46. T. V. Mitkina, D. Yu. Naumov, O. A. Gerasko, and V. P. Fedin, Inorg. Chim. Acta 363, 4387 (2010).

    Article  CAS  Google Scholar 

  47. T. M. Hunter, I. W. McNae, D. P. Simpson, et al., Chem.-Eur. J. 13, 40 (2007).

    Article  Google Scholar 

  48. H. J. Kim, J. Heo, W. S. Jeon, et al., Angew. Chem., Int. Ed. Engl. 40, 1526 (2001).

    Article  CAS  Google Scholar 

  49. W. S. Jeon, K. Moon, S. H. Park, et al., J. Am. Chem. Soc. 127, 12984 (2005).

    Article  CAS  Google Scholar 

  50. R. B. Wang, L. A. Yuan, and D. H. Macartney, Organometallics 25(7), 1820 (2006).

    Article  CAS  Google Scholar 

  51. M. V. Rekharsky, T. Mori, C. Yang, et al., Proc. Nat. Acad. Sci. U.S.A. 104, 20737 (2007).

    Article  CAS  Google Scholar 

  52. L. Yuan and D. H. Macartney, J. Phys. Chem. B 111, 6949 (2007).

    Article  CAS  Google Scholar 

  53. Y. J. Jeon, S.-Y. Kim, Y. H. Ko, et al., Org. Biomol. Chem. 3, 2122 (2005).

    Article  CAS  Google Scholar 

  54. A. R. Kennedy, A. J. Florence, F. J. McInnes, and N. J. Wheate, J. Chem. Soc., Dalton Trans., 7695 (2009).

  55. S. Lorenzo, A. Day, D. Craig, et al., Cryst. Eng. Comm. 49, 1 (2001).

    Google Scholar 

  56. A. Harada, Y. Hu, S. Yamamoto, and S. Takahashi, J. Chem. Soc., Dalton Trans., 729 (1988).

  57. V. T. Yilmaz, A. Karadağ, and H. Içbudak, Thermochim. Acta 261, 107 (1995).

    Article  CAS  Google Scholar 

  58. R. V. Pinjari and S. P. Gejji, J. Phys. Chem. A 112, 12679 (2008).

    Google Scholar 

  59. R. V. Pinjari and S. P. Gejji, J. Phys. Chem. A 114, 2338 (2010).

    Article  CAS  Google Scholar 

  60. W. Ong and A. E. Kaifer, Organometallics 22, 4181 (2003).

    Article  CAS  Google Scholar 

  61. K. Feng, L.-Z. Wu, L.-P. Zhang, and C.-H. Tung, J. Chem. Soc., Dalton Trans., 3991 (2007).

  62. S. Liu, A. D. Shukla, S. Gadde, et al., Angew. Chem., Int. Ed. Engl. 47, 2657 (2008).

    Article  CAS  Google Scholar 

  63. T. Mitkina, V. Fedin, R. Llusar, et al., J. Am. Soc. Mass. Spectrom. 18, 1863 (2007).

    Article  CAS  Google Scholar 

  64. K. Kano, H. Kitagishi, Y. Sone, et al., Eur. J. Inorg. Chem. 20, 4043 (2006).

    Article  Google Scholar 

  65. H.-J. Kim, W. S. Jeon, Y. H. Ko, and K. Kim, Proc. Nat. Acad. Sci. U.S.A. 99, 5007 (2002).

    Article  CAS  Google Scholar 

  66. T. Matsue, D. H. Evans, T. Osa, and N. Kobayashi, J. Am. Chem. Soc. 107, 3411 (1985).

    Article  CAS  Google Scholar 

  67. R. Isnin, C. Salam, and A. Kaifer, J. Org. Chem. 56, 35 (1991).

    Article  CAS  Google Scholar 

  68. Y. Wang, S. Mendoza, and A. E. Kaifer, Inorg. Chem. 37, 317 (1998).

    Article  CAS  Google Scholar 

  69. D. Sobransingh and A. E. Kaifer, Org. Lett. 8, 3247 (2006).

    Article  CAS  Google Scholar 

  70. S. E. Parker, D. Sobransingh, and A. E. Kaifer, Adv. Funct. Mater. 17, 694 (2007).

    Article  Google Scholar 

  71. V. D. Uzunova, C. Cullinane, K. Brix, et al., Org. Biomol. Chem. 8, 2037 (2010).

    Article  CAS  Google Scholar 

  72. G. Hettiarachchi, D. Nguyen, J. Wu, et al., PLoS ONE 5(5), e10514 (2010).

    Article  Google Scholar 

  73. M. S. Bali, D. P. Buck, A. J. Coe, et al., J. Chem. Soc., Dalton Trans., 5337 (2006).

  74. N. J. Wheate, J. Inorg. Biochem. 102, 2060 (2008).

    Article  CAS  Google Scholar 

  75. N. J. Wheate, R. I. Taleb, A. M. Krause-Heuer, et al., J. Chem. Soc., Dalton Trans., 5055 (2007).

  76. S. Kemp, N. J. Wheate, M. P. Pisani, and J. R. Aldrich-Wright, J. Med. Chem. 51, 2787 (2008).

    Article  CAS  Google Scholar 

  77. S. Kemp, N. J. Wheate, S. Wang, et al., J. Biol. Inorg. Chem. 12, 969 (2007).

    Article  CAS  Google Scholar 

  78. Y. Zhao, M. S. Bali, C. Cullinane, et al., Dalton Trans., 5190 (2009).

  79. N. J. Wheate, A. I. Day, R. J. Blanch, et al., J. Chem. Soc., Chem. Commun., 1424 (2004).

  80. K. Kim, Y. J. Jeon, S.-Y. Kim, and Y. H. Ko, Postech Foundation, South Korea, WO2003024978, 2003.

  81. N. J. Wheate, A. I. Day, R. J. Blanch, and J. G. Collins, Unisearch Limited, Australia, WO2005068469, 2005.

  82. D. P. Buck, P. M. Abeysinghe, C. Cullinane, et al., J. Chem. Soc., Dalton Trans., 2328 (2008).

  83. T. M. Hunter, S. J. Paisey, H. S. Park, et al., J. Inorg. Biochem. 98(5), 713 (2004).

    Article  CAS  Google Scholar 

  84. S. Cabani, N. Ceccanti, R. Pardini, and M. R. Tine, Polyhedron 18(25), 3295 (1999).

    Article  CAS  Google Scholar 

  85. R. W. Hay and N. Govan, Transition Met. Chem. 23(6), 721 (1998).

    Article  CAS  Google Scholar 

  86. R. Hettich and H.-J. Schneider, J. Am. Chem. Soc. 119(24), 5638 (1997).

    Article  CAS  Google Scholar 

  87. E. Mario and S. M. Bolton, J. Pharm. Sci. 57, 418 (1968).

    Article  CAS  Google Scholar 

  88. L. Messori, F. Abbate, G. Marcon, et al., J. Med. Chem. 43(19), 3541 (2000).

    Article  CAS  Google Scholar 

  89. A. Casini, C. Hartinger, C. Gabbiani, et al., J. Inorg. Biochem. 102, 564 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasko, O.A., Fedin, V.P. Inclusion compounds of cucurbit[n]urils with metal complexes. Russ. J. Inorg. Chem. 56, 2025–2046 (2011). https://doi.org/10.1134/S003602361113002X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602361113002X

Keywords

Navigation