Skip to main content
Log in

Microstructure Evolution Characteristic and Control of Iron-Rich Phase in Hypereutectic Al–Si Alloy with Co, Mn and P

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this paper, the microstructure evolutions and control of iron-rich phases in hypereutectic Al‒Si with the composite addition of Co, Mn and P were studied. Firstly, it was observed that Fe-rich compounds in series of Al–20Si–2Fe–xCo alloys (x = 1, 2, 3, and 4 wt %) were effectively promoted to transform from long needle-like β-Al5FeSi and coarse plate–like δ-Al4(Fe,Co)Si2 phases to dendritic α‑Al(Fe,Co,Mn)Si phases. The aspect ratio of Fe-rich particles has been reduced from 22.5 to 12.5 with the addition of Co was 3 wt %. Through the complex modification of Co and Mn, the precipitation of α-Al(Fe,Co,Mn)Si phases in types of Al–20Si–2Fe–3Co–yMn samples was further improved. Cooperating with the effective modification of Co and Mn on Fe-rich particles and the refinement of P element on primary Si, the microstructure of experimental alloys was further optimized. In comparison with basic alloy, the Brinell hardness of Al–20Si–2Fe–3Co–2Mn–0.03P alloy was significantly improved as high as 131 HB, reaching by 61.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. W. Cheng, C. Y. Liu, and Z. J. Ge, “Optimizing the mechanical properties of Al–Si alloys through friction stir processing and rolling,” Mater. Sci. Eng., A 804, 140786 (2021).

    Article  CAS  Google Scholar 

  2. X. Z. Zhang, D. T Wang, Y. X. Zhou, X. Y. Chong, X. Z. Li, H. T. Zhang, and H. Nagaumi, “Exploring crystal structures, stability and mechanical properties of Fe, Mn-containing intermetallics in Al–Si Alloy by experiments and first-principles calculations,” J. Alloys Compd. 876, 160022 (2021).

    Article  CAS  Google Scholar 

  3. Y. Guo, Y. Wang, H. T. Chen, H. Y. Xu, M. L Hu, and Z. S. Ji, “Anisotropic elasticity, electronic structure and thermodynamic properties of Al–Fe–Si intermetallic compounds from first principles calculations,” Solid State Commun. 298, 113643 (2019).

    Article  CAS  Google Scholar 

  4. C. B. Basak, A. Meduri, and N. H. Babu, “Influence of Ni in high Fe containing recyclable Al–Si cast alloys,” Mater. Des. 182, 108017 (2019).

    Article  CAS  Google Scholar 

  5. C. D. Li, J. Z. Xu, J. J. Xu, Y. Shen, and M. Jin, “Rounded silicon edges on the surface of Al–Si alloy cylinder liner by means of mechanical grinding treatment,” Tribol. Int. 104, 204–211 (2016).

    Article  CAS  Google Scholar 

  6. Q. L. Li, Y. Q. Zhu, B. Q. Li, W. W. Ding, Y. F. Lan, T. D. Xia, and Q. B. Du, “Effect of iron addition on the microstructures and properties of hypereutectic Al–20% Si alloys,” Mater. Res. Express 6, 016506 (2018).

    Article  Google Scholar 

  7. K. Yu, S. j. LI, L. S. Chen, W. S. Zhao, and P. F. Li, “Microstructure characterization and thermal properties of hypereutectic Si–Al alloy for electronic packaging applications,” Trans. Nonferrous Met. Soc. China 22, 1412–1417 (2012).

    Article  CAS  Google Scholar 

  8. G. Zhong, S. S. Wu, P. An, Y. W. Mao, and S. Z. Li, “Microstructure and properties of high silicon aluminum alloy with 2% Fe prepared by rheo-casting,” Trans. Nonferrous Met. Soc. China 20, 1603–1607 (2010).

    Article  CAS  Google Scholar 

  9. C. Lin, S. S Wu, S. L Lü, P. An, and L. Wan, “Effects of ultrasonic vibration and manganese on microstructure and mechanical properties of hypereutectic Al–Si alloys with 2% Fe,” Intermetallics 32, 176–183 (2013).

    Article  CAS  Google Scholar 

  10. G. Zhong, S. S. Wu, H. W. Jiang, and P. An, “Effects of ultrasonic vibration on the iron-containing intermetallic compounds of high silicon aluminum alloy with 2% Fe,” J. Alloys Compd. 492, 482–487 (2010).

    Article  CAS  Google Scholar 

  11. L. Li, R. F. Zhou, Q. H. Cen, D. H. Lu, Y. H. Jiang, and R. Zhou, “Effect of cooling rate on the microstructure of semi-solid Al–25Si–2Fe alloy during electromagnetic stirring,” Trans. Indian Inst. Met. 66, 163–169 (2013).

    Article  Google Scholar 

  12. D. H. Lu, Y. H. Jiang, G. S Guan, R. F. Zhou, Z. H. Li, and R. Zhou, “Refinement of primary Si in hypereutectic Al–Si alloy by electromagnetic stirring,” J. Mater. Process. Technol. 189, 13–18 (2007).

    Article  CAS  Google Scholar 

  13. A. K. Srivastava, V. C. Srivastava, A. Gloter, and S. N. Ojha, “Microstructural features induced by spray processing and hot extrusion of an Al–18% Si–5% Fe–1.5% Cu alloy,” Acta Mater. 54, 1741–1748 (2006).

    Article  CAS  Google Scholar 

  14. R. Ahmad and R. I. Marshall, “Effect of superheating on iron-rich plate-type compounds in Aluminium–Silicon alloys,” Int. J. Cast Met. Res. 15, 497–504 (2003).

    Article  CAS  Google Scholar 

  15. S. S. Wu, C. Lin, S. L. Lü, and P. An, “Microstructure and mechanical properties of hypereutectic Al–Si alloy with 2% Fe prepared by semi-solid processs,” Solid State Phenom. 192–193, 130–135 (2013).

    Google Scholar 

  16. L. Li, R. F. Zhou, Y. H. Jiang, X. C. Wang, and R. Zhou, “Effect of manganese on the formation of Fe-rich phases in electromagnetic stirred hypereutectic Al–22Si alloy with 2% Fe,” Trans. Indian Inst. Met. 67, 861–867 (2014).

    Article  CAS  Google Scholar 

  17. Y. Y. Zhang, S. H. Feng, C. Ding, H. R. J. Nodooshan, S. L. Ye, F. Jiang, Z. Li, M. Gu, and P. Yu, “Investigation of the influences of heat treatment on the microstructures and thermal properties of Al–20Si alloy fabricated by powder extrusion,” Mater. Charact. 168, 110522 (2020).

    Article  CAS  Google Scholar 

  18. L. F. Mondolfo, Aluminum Alloy: Structure and Properties, 1st ed. (Butterworths, London), pp. 282–289 (1976).

    Google Scholar 

  19. F. Wang, Z. Y. Zhang, and Y. J. Ma, “Effect of Fe and Mn additions on microstructure and wear properties of spray-deposited Al–20Si alloy,” Mater. Lett. 58, 2442–2446 (2004).

    Article  CAS  Google Scholar 

  20. M. F. Kilicaslan, F. Yilmaz, S. J. Hong, and O. Uzun, “Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al–20Si–5Fe alloys,” Mater. Sci. Eng., A 556, 716–721 (2012).

    Article  CAS  Google Scholar 

  21. M. Sha, S. S. Wu, and L. Wan, “Combined effects of cobalt addition and ultrasonic vibration on microstructure and mechanical properties of hypereutectic Al–Si alloys with 0.7%,” Mater. Sci. Eng., A 554, 142–148 (2012).

    Article  CAS  Google Scholar 

  22. K. Abedi and M. Emamy, “The effect of Fe, Mn and Sr on the microstructure and tensile properties of A356–10% SiC composite,” Mater. Sci. Eng., A 527, 3733–3740 (2010).

    Article  Google Scholar 

  23. Z. P. Que and C. L. Mendis, “Formation of θ-Al13Fe4 and the multi-step phase transformations to α-Al8Fe2Si, β-Al5FeSi and δ-Al4FeSi2 in Al–20Si–0.7Fe alloy,” Intermetallics 127, 106960 (2020).

    Article  CAS  Google Scholar 

  24. H. Y. Kim, T. Y. Park, S. W. Han, and H. M. Lee, “Effects of Mn on the crystal structure of α-Al(Mn,Fe)Si particles in A356 alloys,” J. Cryst. Growth 291, 207–211 (2006).

    Article  CAS  Google Scholar 

  25. J. Wang, X. Liu, C. Lei, X. H. Mao, F. Luo, D. H. Liu, X. A. Fan, and Z. G. Luo, “Core loss reduction for Fe–6.5 wt % Si soft magnetic composites doped with Co element,” J. Magn. Magn. Mater. 502, 166553 (2020).

    Article  CAS  Google Scholar 

  26. M. Zuo, D. G. Zhao, X. Y. Teng, H. R. Geng, and Z. S. Zhang, “Effect of P and Sr complex modification on Si phase in hypereutectic Al–30Si alloys,” Mater. Des. 47, 857–864 (2013).

    Article  CAS  Google Scholar 

  27. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, “Chapter one-alloying elements and dopants: phase diagrams,” Casting Aluminum Alloys, 1st ed. (Elsevier, London), pp. 1–93 (2007).

    Book  Google Scholar 

  28. G. G. Petzow and G. G. Effenberg, “Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams,” Int. Mater. Rev. 34, 211–212 (1989).

    Article  Google Scholar 

  29. L. A. Narayanan, F. H. Samuel, and J. E. Gruzleski, “Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy,” Metall. Mater. Trans. A 25, 1761–1773 (1994).

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the supports of National Science Foundation of Shandong Province (ZR2019MEM019), National Natural Science Foundations of China (51772132), Shandong Province Higher Educational Youths Innovative Science and Technology Program (2019KJA018) and the leaders of Scientific Research Studio Programs of Jinan (nos. 2021GXRC082 and 2021GXRC076).

Author information

Authors and Affiliations

Authors

Contributions

The authors Wenli Xia and Min Zuo contributed equally to this work.

Corresponding authors

Correspondence to Min Zuo or Degang Zhao.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenli Xia, Zuo, M., Li, Y. et al. Microstructure Evolution Characteristic and Control of Iron-Rich Phase in Hypereutectic Al–Si Alloy with Co, Mn and P. Phys. Metals Metallogr. 123, 1361–1368 (2022). https://doi.org/10.1134/S0031918X2210009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2210009X

Keywords:

Navigation