Skip to main content
Log in

Exchange Correlation Effects in Modulated Martensitic Structures of the Mn2NiGa Alloy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This study is devoted to ab initio calculations of the ground state properties of the Mn2NiGa Heusler alloy in the austenitic and martensitic phases. The calculations were performed using an approach in which exchange correlation effects are taken into account via the generalized and metageneralized gradient approximations. The martensitic phase includes four low symmetry structures: the tetragonal unmodulated and three-, five-, and seven-layer modulated monoclinic structures. It is shown that both approximations predict the martensitic transformation between the cubic austenitic and unmodulated martensitic phases, as well as the presence of modulated structures in the martensitic phase. However, the considered approximations lead to opposite behaviors of the energy of the structures and the modulation amplitude with an increase in the modulation period. Namely, these characteristics increase within the generalized gradient approximation and decrease within the metageneralized gradient approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 43, 559 (2003).

    Article  Google Scholar 

  2. V. D. Buchel’nikov, A. N. Vasiliev, V. V. Koledov, S. V. Taskaev, V. V. Khovailo, and V. G. Shavrov, “Magnetic shape-memory alloys: phase transitions and functional properties,” Phys.-Usp. 49, 871 (2006).

    Article  Google Scholar 

  3. P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modeling the phase diagram of magnetic shape memory Heusler alloys,” J. Phys. D: Appl. Phys. 39 (5), 865 (2006).

    Article  CAS  Google Scholar 

  4. T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39 (1), 1 (2011).

    Article  CAS  Google Scholar 

  5. P. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K. Neumann, B. Ouladdiaf, and K. Ziebeck, “The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa,” J. Phys.: Condens. Matter 14, 10159 (2002).

    CAS  Google Scholar 

  6. J. Pons, R. Santamarta, V. A. Chernenko, and E. Cesari, “Long-period martensitic structures of Ni–Mn–Ga alloys studied by high-resolution transmission electron microscopy,” J. Appl. Phys. 97, 083516 (2005).

    Article  Google Scholar 

  7. L. Straka, O. Heczko, H. Seiner, N. Lanska, J. Drahokoupil, A. Soroka, S. Fähler, H. Hänninen, and A. Sozinov, “Highly mobile twinned interface in 10 M modulated Ni–Mn–Ga martensite: analysis beyond the tetragonal approximation of lattice,” Acta Mater. 59, 7450 (2011).

    Article  CAS  Google Scholar 

  8. S. J. Murray, M. Marioni, S. M. Allen, R. C. O’Handley, and T. A. Lograsso, “6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga,” Appl. Phys. Lett. 77, 886 (2000).

    Article  CAS  Google Scholar 

  9. A. Sozinov, A. Likhachev, N. Lanska, and K. Ullakko, “Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,” Appl. Phys. Lett. 80, 1746 (2002).

    Article  CAS  Google Scholar 

  10. A. Sozinov, A. Likhachev, and K. Ullakko, “Crystal structures and magnetic anisotropy properties of Ni–Mn–Ga martensitic phases with giant magnetic-field-induced strain,” IEEE Trans. Magn. 38, 2814 (2002).

    Article  CAS  Google Scholar 

  11. Y. Lee, J. Y. Rhee, and B. N. Harmon, “Generalized susceptibility of the magnetic shape-memory alloy Ni2MnGa,” Phys. Rev. B 66, 054424 (2002).

    Article  Google Scholar 

  12. C. Bungaro, K. M. Rabe, and A. Dal Corso, “First-principles study of lattice instabilities in ferromagnetic Ni2MnGa,” Phys. Rev. B 68, 134104 (2003).

    Article  Google Scholar 

  13. A. G. Khachaturyan, S. M. Shapiro, and S. Semenovs-kaya, “Adaptive phase formation in martensitic transformation,” Phys. Rev. B 43, 10832 (1991).

    Article  CAS  Google Scholar 

  14. S. Kaufmann, U. K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, and S. Fähler, “Adaptive modulations of martensites,” Phys. Rev. Lett. 104, 145702 (2010).

    Article  CAS  Google Scholar 

  15. R. Niemann, U. K. Rößler, M. E. Gruner, O. Heczko, L. Schultz, and S. Fähler, “Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation,” Adv. Eng. Mater. 14, 562 (2012).

    Article  CAS  Google Scholar 

  16. M. E. Gruner, R. Niemann, P. Entel, R. Pentcheva, U. K. Rößler, K. Nielsch, and S. Fähler, “Modulations in martensitic Heusler alloys originate from nanotwin ordering,” Sci. Rep. 8, 8489 (2018).

    Article  CAS  Google Scholar 

  17. P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, “Magnetic order and phase transformation in Ni2MnGa,” Philos. Mag. 49, 295 (1984).

    Article  CAS  Google Scholar 

  18. V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, “Phase transitions in Ni2 + xMn1 – xGa with a high Ni excess,” Phys. Rev. B 72, 224408 (2005).

    Article  Google Scholar 

  19. S. R. Barman and A. Chakrabarti, “Comment on “Physical and electronic structure and magnetism of Mn2NiGa: experiment and density-functional theory calculations”,” Phys. Rev. B 77, 176401 (2008).

    Article  Google Scholar 

  20. S. Singh, R. Rawat, S. E. Muthu, S. W. D’Souza, E. Suard, A. Senyshyn, S. Banik, P. Rajput, S. Bhardwaj, A. M. Awasthi, R. Ranjan, S. Arumugam, D. L. Schlagel, T. A. Lograsso, A. Chakrabarti, and S. R. Barman, “Spin-valve-like magnetoresistance in Mn2NiGa at room temperature,” Phys. Rev. Lett. 109, 246601 (2012).

    Article  Google Scholar 

  21. S. Singh, S. Esakki Muthu, A. Senyshyn, P. Rajput, E. Suard, S. Arumugam, and S. Barman, “Inverse magnetocaloric effect in Mn2NiGa and Mn1.75Ni1.25Ga magnetic shape memory alloys,” Appl. Phys. Lett. 104, 051905 (2014).

    Article  Google Scholar 

  22. S. Singh, M. Maniraj, S. Dsouza, R. Ranjan, and S. Barman, “Structural transformations in Mn2NiGa due to residual stress,” Appl. Phys. Lett. 96, 081904 (2010).

    Article  Google Scholar 

  23. P. J. Brown, T. Kanomata, K. Neumann, K. U. Neumann, B. Ouladdiaf, A. Sheikh, and K. R. A. Ziebeck, “Atomic and magnetic order in the shape memory alloy Mn2NiGa,” J. Phys.: Condens. Matter 22, 506001 (2010).

    CAS  Google Scholar 

  24. S. Paul and S. J. Ghosh, “First-principles investigations of the electronic structure and properties related to shape-memory behavior in Mn2NiX (X  =  Al, Ga, In, Sn) alloys,” Appl. Phys. Lett. 110, 063523 (2011).

    Google Scholar 

  25. V. V. Sokolovskiy, M. A. Zagrebin, Y. A. Sokolovskaya, and V. D. Buchelnikov, “Structural and magnetic properties of Mn2NiZ (Z = Ga, In, Sn, Sb) Heusler alloys from ab initio calculations,” Solid State Phenom. 233, 229 (2015).

    Article  Google Scholar 

  26. A. P. Kamantsev, Yu. S. Koshkid’ko, E. O. Bykov, V. S. Kalashnikov, A. V. Koshelev, A. V. Mashirov, I. I. Musabirov, M. A. Paukov, and V. V. Sokolovskiy, “Magnetocaloric and shape memory effects in the Mn2NiGa Heusler alloy,” Phys. Solid State 62, 815–820 (2020).

    Article  CAS  Google Scholar 

  27. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. B 77, 3865 (1996).

    CAS  Google Scholar 

  28. J. Sun, A. Ruzsinszky, and J. P. Perdew, “Strongly constrained and appropriately normed semilocal density functional,” Phys. Rev. B 115, 036402 (2015).

    Google Scholar 

  29. Y. Zhang, J. Sun, J. P. Perdew, and X. Wu, “Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA,” Phys. Rev. B 96, 035143 (2017).

    Article  Google Scholar 

  30. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  31. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by grant no. 17-72-20022 from the Russian Science Foundation (calculations in the metageneralized gradient approximation) and within State assignment no. 075-01391-22-00 from the Ministry of Education and Science of the Russian Federation (calculations in the generalized gradient approximation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Erager.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erager, K.R., Baigutlin, D.R., Sokolovskiy, V.V. et al. Exchange Correlation Effects in Modulated Martensitic Structures of the Mn2NiGa Alloy. Phys. Metals Metallogr. 123, 375–380 (2022). https://doi.org/10.1134/S0031918X22040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22040044

Keywords:

Navigation