Skip to main content
Log in

Magnetic and Magnetocaloric Properties of the Tm1 – xYx(Co0.84Fe0.16)2 Compounds

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of substitution of yttrium for thulium in the Tm(Co0.84Fe0.16)2 compound on the crystal structure, temperature and field dependences of magnetization (σ), temperature dependences of the high-field susceptibility (χhf), isothermal magnetic entropy change (∆Sm), and adiabatic temperature change (∆Tad) is studied. The magnetic and magnetocaloric properties were measured in magnetic fields up to 90 kOe in a temperature range of 5–380 K. The dependences σ(T) measured in an external magnetic field of 100 Oe were found to exhibit the magnetization inversion. The field dependence of the magnetic moment of the Tm0.4Y0.6(Co0.84Fe0.16)2 compound, which is measured at 5 K, exhibits a point of inflection corresponding to a magnetic field of 49.5 kOe; the substantial increase in the magnetic field leads to an increase in the susceptibility of the sample to the magnetic field. Samples characterized by magnetic compensation temperature demonstrate the alternation of direct and inverse magnetocaloric effect (MCE). A number of the compounds under study exhibit the plateau-like temperature dependences of ∆Sm and ∆Tad in a temperature range of inverse MCE. The results obtained are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: from materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018).

    Article  Google Scholar 

  2. M. Anikin, E. Tarasov, N. Kudrevatykh, A. Inishev, M. Semkin, A. Volegov, and A. Zinin, “Features of magnetic and thermal properties of R(Co1–xFex)2 (x ≤ 0.16) quasibinary compounds with R = Dy, Ho, Er,” J. Magn. Magn. Mater. 418, 181–187 (2016).

    Article  CAS  Google Scholar 

  3. I. Chaaba, S. Othmani, S. Haj-Khlifa, P. de Rango, D. Fruchart, W. Cheikhrouhou-Koubaa, and A. Cheikhrouhou, “Magnetic and magnetocaloric properties of Er(Co1–xFex)2 intermetallic compounds,” J. Magn. Magn. Mater. 439, 269–276 (2017).

    Article  CAS  Google Scholar 

  4. M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, A. S. Volegov, and A. V. Zinin, “Magnetic properties of R(Co0.88Fe0.12)2 quasi-binary compounds,” J. Phys.: Conf. Ser. 1389, 012061 (2019).

    CAS  Google Scholar 

  5. E. Belorizky, M. A. Fremy, J. P. Gavigan, D. Givord, and H. S. Li, “Evidence in rare-earth (R)-transition metal (M) intermetallics for a systematic dependence of R-M exchange interactions on the nature of the R atom,” J. Appl. Phys. 61, 3971 (1987).

    Article  CAS  Google Scholar 

  6. M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, A. A. Inishev, and A. V. Zinin, “Thermomagnetic properties of materials based on R(Co1–xFex)2 laves phases with heavy rare-earth metals,” Met. Sci. Heat Treat. 60, 522–527 (2018).

    Article  CAS  Google Scholar 

  7. M. Balli, D. Fruchart, and D. Gignoux, “A study of magnetism and magnetocaloric effect in Ho1 – xTbxCo2 compounds,” J. Magn. Magn. Mater. 314, 16–20 (2007).

    Article  CAS  Google Scholar 

  8. J. Cwik, “Effect of partial Gd substitution on the magnetic and magnetocaloric properties in Dy–Ho–Gd–Co multicomponent compounds,” Phys. Status Solidi B 250 (9), 1926–1931 (2013).

    Article  CAS  Google Scholar 

  9. J. Rodriguez-Carvajal, “Resent advances in magnetic structure determination by neutron powder diffraction,” Phys. B (Amsterdam) 192, 55–69 (1993).

    Article  CAS  Google Scholar 

  10. A. V. Andreev, D. I. Gorbunov, J. Sebek, and D. S. Neznakhin, “Influence of Co on the magnetism of HoFe5Al7,” J. Alloys Compd. 731, 135–142 (2018).

    Article  CAS  Google Scholar 

  11. D. I. Gorbunov, A. V. Andreev, D. S. Neznakhin, M. S. Henriques, J. Sebek, Y. Skourski, S. Danis, and J. Wosnitza, “Magnetic properties of DyFe5 – xCoxAl7: suppression of exchange interactions and magnetocrystalline anisotropy by Co substitution,” J. Alloys Compd. 741, 715–722 (2018).

    Article  CAS  Google Scholar 

  12. M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, D. S. Neznakhin, M. A. Semkin, N. V. Selezneva, S. V. Andreev, and A. V. Zinin, “Magnetic and magneto-thermal properties of ferrimagnetic alloys (Er1 ‒ xYx)(Co0.84Fe0.16)2 and their dependence on the orientations of resultant and sublattice magnetizations,” J. Phys.: Condens. Matter 33, 275801 (2021).

    CAS  Google Scholar 

  13. M. S. Anikin, E. N. Tarasov, D. S. Neznakhin, M. A. Semkin, N. V. Selezneva, S. V. Andreev, M. V. Ragozina, and A. V. Zinin, “Magnetic and magnetocaloric properties of Ho1 – xYx(Co0.84Fe0.16)2 compounds,” Fiz. Tverd. Tela 63, 1795–1800 (2021).

    Google Scholar 

  14. P. E. Brommer, I. S. Dubenko, J. J. M. Franse, R. Z. Levitin, A. S. Markosyan, R. J. Radwański, V. V. Snegirev, and A. V. Sokolov, “Field-induced noncollinear magnetic structures in Al-stabilized RCo2 Laves phases,” Phys. B (Amsterdam) 183, 363–368 (1993).

    Article  CAS  Google Scholar 

  15. P. E. Brommer, I. S. Dubenko, J. J. M. Franse, F. Kayzel, N. P. Kolmakova, R. Z. Levitin, A. S. Markosyan, and A. Yu. Sokolov, “Phase transitions induced by magnetic field in ferrimagnets with one unstable magnetic subsystem,” Phys. B (Amsterdam) 211, 155–268 (1995).

    Article  CAS  Google Scholar 

  16. R. Hauser, C. Kussbach, R. Grossinger, G. Hilscher, Z. Arnold, J. Kamarad, A. S. Markosyan, E. Chappel, and G. Chouteau, “On the metamagnetic state in Er1 ‒ xTxCo2 (T = Y, Tm) compounds,” Phys. B (Amsterdam) 294295, 182–185 (2001).

    Article  Google Scholar 

  17. S. H. Kilcoyne, “The evolution of magnetic correlations and onset of magnetic order in Y(Co1 – xFex)2,” Phys. B (Amsterdam) 296298, 660–661 (2000).

    Article  Google Scholar 

  18. H. Neves Bez, H. Yibole, A. Pathak, Y. Mudryk, and V. K. Pecharsky, “Best practices in evaluation of the magnetocaloric effect from bulk magnetization measurements,” J. Magn. Magn. Mater. 458, 301–309 (2018).

    Article  CAS  Google Scholar 

  19. M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, M. A. Semkin, A. S. Volegov, A. A. Inishev, and A. V. Zinin, “Features of magnetocaloric effect in Er(Co–Fe)2 laves phases,” KnE Mater. Sci. 2016, 5–10 (2016).

    Google Scholar 

  20. A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, “Magnetocaloric effects in rare earth magnets,” Usp. Fiz. Nauk 458, 301–309 (2018).

    Google Scholar 

  21. E. G. Gerasimov, A. A. Inishev, N. V. Mushnikov, P. B. Terentev, V. S. Gaviko, and M. S. Anikin, “Magnetocaloric effect, heat capacity and exchange interactions in nonstoichiometric Er0.65Gd0.35Co2Mnx compounds,” Intermetallics 140, 107386 (2022).

    Article  CAS  Google Scholar 

Download references

Funding

The studies were supported by the Ministry of Science and Higher Education of the Russian Federation (state agreement no. FEUZ-2020-0051 with the Ural Federal University) and were performed using equipment of the Center of Collective Access for Modern Nanotechnologies in the Ural Federal University, which is supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2021-677).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Anikin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, M.S., Tarasov, E.N., Neznakhin, D.S. et al. Magnetic and Magnetocaloric Properties of the Tm1 – xYx(Co0.84Fe0.16)2 Compounds. Phys. Metals Metallogr. 123, 407–413 (2022). https://doi.org/10.1134/S0031918X22040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22040032

Keywords:

Navigation