Skip to main content
Log in

Magnetism of metals in the dynamic spin-fluctuation theory

  • Electrical and Magnetic Properties
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

We overview new developments in spin-fluctuation theory, which describes magnetic properties of ferromagnetic metals at finite temperatures. We present a detailed analysis of the underlying techniques and compare numerical results with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. M. Bozorth, Ferromagnetism (D. van Nostrand, New York, 1951; Inostrannaya Literature, 1956, Moscow).

    Google Scholar 

  2. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Nauka, Moscow, 1965; Springer, NewYork, 1967).

    Book  Google Scholar 

  3. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).

    Google Scholar 

  4. S. Chikazumi, Physics of Ferromagnetism (Syokabo, Tokyo, 1980; Mir, Moscow, 1983; Clarendon, Oxford, 1997 (2nd ed.)).

    Google Scholar 

  5. D. Kim, New Perspectives in Magnetism of Metals (Kluwer Academic/Plenum, New York, 1999).

    Book  Google Scholar 

  6. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005), 8th ed.

    Google Scholar 

  7. R. White, Quantum Theory of Magnetism (Wiley, New York, 1976; Nauka, Moscow, 1978; Springer, Berlin, 2007 (3rd ed.)).

    Book  Google Scholar 

  8. C. Slichter, Principles of Magnetic Resonance (Springer, New York, 1980; Mir, Moscow, 1981; Springer, Berlin, 1990), 3rd ed.

    Book  Google Scholar 

  9. A. Gurevich and G. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC, Boca Raton, 1996).

    Google Scholar 

  10. N. B. Melnikov and B. I. Reser, “Magnetic susceptibility and the T3/2 law in the dynamic spin-fluctuation theory,” Theor. Math. Phys. 181, 1435–1447 (2014).

    Article  Google Scholar 

  11. Y. Kakehashi, Modern Theory of Magnetism in Metals and Alloys (Springer, Berlin, 2012).

    Google Scholar 

  12. N. B. Melnikov and B. I. Reser, “Optimal Gaussian approximation in the fluctuating field theory,” Proc. Steklov Inst. Math. 271, 149–170 (2010).

    Article  Google Scholar 

  13. S. Raimes, The Wave Mechanics of Electrons in Metals (North-Holland, Amsterdam, 1970).

    Google Scholar 

  14. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985; Mir, Moscow, 1988).

    Google Scholar 

  15. J. KĂĽbler, Theory of Itinerant Electron Magnetism (Oxford Univ., Oxford, 2009), 2nd ed.

    Google Scholar 

  16. Y. Takahashi, Spin Fluctuation Theory of Itinerant Electron Magnetism (Springer, Berlin, 2013).

    Book  Google Scholar 

  17. R. Stratonovich, “On a method of calculating quantum distribution functions,” Sov. Phys. Dokl., 2, 416–419 (1958).

    Google Scholar 

  18. J. Hubbard, “Calculation of partition functions,” Phys. Rev. Lett., 3, 77–78 (1959).

    Article  Google Scholar 

  19. J. Hubbard, “The magnetism of iron,” Phys. Rev. B: Condens. Matter 19, 2626–2636 (1979)

    Article  Google Scholar 

  20. J. Hubbard, “Magnetism of iron. II,” Phys. Rev. B: Condens. Matter 20, 4584–4595 (1979).

    Article  Google Scholar 

  21. H. Hasegawa, “Single-site functional-integral approach to itinerant-electron ferromagnetism,” J. Phys. Soc. Jpn. 46, 1504–1514 (1979).

    Article  Google Scholar 

  22. H. Hasegawa, “Single-site spin fluctuation theory of itinerant electrons systems with narrow bands,” J. Phys. Soc. Jpn. 49, 178–188 (1980)

    Article  Google Scholar 

  23. H. Hasegawa, “Single-site spin fluctuation theory of itinerant electrons systems with narrow bands. II,” J. Phys. Soc. Jpn. 49, 963–971 (1980).

    Article  Google Scholar 

  24. V. I. Grebennikov, Y. Prokopjev, O. Sokolov, and E. Turov, “Method of local fluctuations in the theory of magnetism of transition metals,” Phys. Met. Metallogr. 52, 1–14 (1981).

    Google Scholar 

  25. B. Gyorffy, A. Pindor, J. Staunton, G. Stocks, and H. Winter, “A first-principles theory of ferromagnetic phase transitions in metals,” J. Phys. F: Met. Phys. 15, 1337–1386 (1985)

    Article  Google Scholar 

  26. J. Staunton, B. Gyorffy, A. Pindor, G. Stocks, and H. Winter, “Electronic structure of metallic ferromagnets above the Curie temperature,” J. Phys. F: Met. Phys. 15, 1387–1404 (1985)

    Article  Google Scholar 

  27. J. Staunton, B. Gyorffy, G. Stocks, and J. Wadsworth, “The static, paramagnetic, spin susceptibility of metals at finite temperatures,” J. Phys. F: Met. Phys. 16, 1761–1788 (1986).

    Article  Google Scholar 

  28. Y. Kakehashi, “Dynamical coherent-potential approximation to the magnetism in a correlated electron system,” Phys. Rev. B: Condens. Matter 65, 184420 (2002).

    Article  Google Scholar 

  29. G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Parcollet, and C. Marianetti, “Electronic structure calculations with dynamical mean-field theory,” Rev. Mod. Phys. 78, 865–951 (2006).

    Article  Google Scholar 

  30. J. A. Hertz and M. A. Klenin, “Fluctuations in itinerant-electron paramagnets,” Phys. Rev. B: Solid State 10, 1084–1096 (1974)

    Article  Google Scholar 

  31. J. A. Hertz and M. A. Klenin, “Sloppy spin waves above TC,” Physica B and C 91, 49–55 (1977).

    Article  Google Scholar 

  32. V. I. Grebennikov, “Spin density correlations in paramagnetic iron,” J. Magn. Magn. Mater. 84, 59–68 (1990).

    Article  Google Scholar 

  33. B. I. Reser and V. I. Grebennikov, “Calculation of the density of states and magnetization of ferromagnetic metals with account taken of local spin fluctuations,” Phys. Met. Metallogr. 83, 127–133 (1997).

    Google Scholar 

  34. B. I. Reser and V. I. Grebennikov, “Effect of dynamic nonlocal spin fluctuations on the temperature dependence of magnetic properties of ferromagnetic metals,” Phys. Met. Metallogr. 85, 20–27 (1998).

    Google Scholar 

  35. V. I. Grebennikov, “The dynamic theory of thermal spin fluctuations in magnets,” Phys. Solid State 40, 79–86 (1998).

    Article  Google Scholar 

  36. A. Lichtenstein, M. Katsnelson, and G. Kotliar, “Finite temperature magnetism of transition metals: An ab initio dynamical mean-field theory,” Phys. Rev. Lett. 87, 067205 (2001).

    Article  Google Scholar 

  37. A. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, “Temperature-induced longitudinal spin fluctuations in Fe and Ni,” Phys. Rev. B: Condens. Matter 75, 054402 (2007).

    Article  Google Scholar 

  38. P.-W. Ma and S. Dudarev, “Longitudinal magnetic fluctuations in Langevin spin dynamics,” Phys. Rev. B: Condens. Matter 86, 054416 (2012).

    Article  Google Scholar 

  39. V. I. Grebennikov and S. A. Gudin, “Effects of dynamic spin fluctuations in iron, cobalt, and nickel,” Phys. Met. Metallogr. 85, 258–267 (1998).

    Google Scholar 

  40. B. I. Reser, “Calculation of the magnetic properties of Fe, Co and Ni with account taken of the real band structure and spin fluctuations,” J. Phys.: Condens. Matter 11, 4871–4885 (1999).

    Google Scholar 

  41. B. I. Reser, “Temperature dependence of nuclear spin-relaxation rates for Fe, Co and Ni,” J. Phys.: Condens. Matter 12, 9323–9333 (2000)

    Google Scholar 

  42. B. I. Reser, “Nuclear spin-relaxation rates for ferromagnetic metals at finite temperatures,” Phys. Met. Metallogr. 92 (Suppl. 1), S123–S126 (2001).

    Google Scholar 

  43. B. I. Reser, “Numerical calculation of local magnetic characteristics of Fe, Co and Ni at finite temperatures,” J. Phys.: Condens. Matter 14, 1285–1296 (2002).

    Google Scholar 

  44. B. I. Reser, “Calculation of local magnetic characteristics of ferromagnetic metals taking into account the dynamic spin fluctuations,” J. Magn. Magn. Mater. 258–259, 51–53 (2003).

    Article  Google Scholar 

  45. B. I. Reser, “Magnetic properties of FeNi invar calculated in the dynamic non-local approximation of the spin fluctuation theory,” J. Phys.: Condens. Matter 16, 361–371 (2004).

    Google Scholar 

  46. B. I. Reser, “Effect of dynamics and nonlocality of spin fluctuations on magnetization of iron and invar FeNi alloy at low temperatures,” Phys. Met. Metallogr. 97, 448–451 (2004).

    Google Scholar 

  47. B. I. Reser, “Temperature dependence of magnetic properties of a disordered Fe0.65Ni0.35,” Phys. Met. Metallogr. 103, 373–379 (2007).

    Google Scholar 

  48. J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. Lond. A 276, 238–257 (1963).

    Article  Google Scholar 

  49. J. Hubbard, “Calculation of the magnetic properties of iron and nickel by the functional integral method,” in Electron Correlation and Magnetism in Narrow-Band Systems, Ed. by T. Moriya (Springer, Berlin, 1981), pp. 29–37.

    Chapter  Google Scholar 

  50. A. Klejnberg and J. Spalek, “Simple treatment of the metal-insulator transition: Effects of degeneracy, temperature, and applied magnetic field,” Phys. Rev. B: Condens. Matter 57, 12041–12055 (1998).

    Article  Google Scholar 

  51. N. B. Melnikov, B. I. Reser, and V. I. Grebennikov, “Spin-fluctuation theory beyond Gaussian approximation,” J. Phys. A: Math. Theor. 43, 195004 (2010).

    Article  Google Scholar 

  52. R. Feynman, “Slow electrons in a polar crystal,” Phys. Rev. 97, 660–665 (1955).

    Article  Google Scholar 

  53. V. I. Grebennikov and O. Sokolov, “Superconductivity of narrow-band metals in a model of multichannel scattering on electron density fluctuations,” J. Phys.: Condens. Matter 4, 3283–3288 (1992).

    Google Scholar 

  54. V. I. Grebennikov and D. Radzivonchik, “Spin fluctuations in disordered metallic ferrimagnetic alloys,” Solid State Phenom. 233–234, 25–29 (2015).

  55. N. B. Melnikov, B. I. Reser, and V. I. Grebennikov, “Extended dynamic spin-fluctuation theory of metallic magnetism,” J. Phys.: Condens. Matter 23, 276003 (2011).

    Google Scholar 

  56. B. I. Reser, “Numerical method for calculation of the Fermi integrals,” J. Phys.: Condens. Matter 8, 3151–3160 (1996).

    Google Scholar 

  57. V. Moruzzi, J. Janak, and A. Williams, Calculated Electronic Properties of Metals (Pergamon, New York, 1978).

    Google Scholar 

  58. J. Crangle and G. Goodman, “The magnetization of pure iron and nickel,” Proc. R. Soc. Lond. A 321, 477–491 (1971).

    Article  Google Scholar 

  59. E. Wohlfarth, “Iron, cobalt and nickel,” in Ferromagnetic Materials, Ed. by E. Wohlfarth (North-Holland, Amsterdam, 1980), Vol. 1, pp. 1–70.

    Google Scholar 

  60. Landolt–Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics (Springer, Berlin, 1987), Vol. 19a.

  61. O. Eriksson, B. Johansson, R. Albers, and A. Boring, “Orbital magnetism in Fe, Co, and Ni,” Phys. Rev. B: Condens. Matter 42, 2707–2710 (1990).

    Article  Google Scholar 

  62. L. Sandratskii and J. Kübler, “Static non-uniform magnetic susceptibility of selected transition metals,” J. Phys.: Condens. Matter 4, 6927–6942 (1992).

    Google Scholar 

  63. V. Moruzzi, P. Markus, K. Schwarz, and P. Mohn, “Total energy surfaces in the M-V plane for bcc and fcc cobalt,” J. Magn. Magn. Mater. 54–57, 955–956 (1986).

    Article  Google Scholar 

  64. P. Mohn and E. Wohlfarth, “The Curie temperature of the ferromagnetic transition metals and their compounds,” J. Phys. F: Met. Phys. 17, 2421–2430 (1987).

    Article  Google Scholar 

  65. J. Staunton and B. Gyorffy, “Onsager cavity fields in itinerant-electron paramagnets,” Phys. Rev. Lett. 69, 371–374 (1992).

    Article  Google Scholar 

  66. M. Uhl and J. Kübler, “Exchange-coupled spin-fluctuation theory: Application to Fe, Co, and Ni,” Phys. Rev. Lett. 77, 334–337 (1996).

    Article  Google Scholar 

  67. N. Basalis, N. Theodorakopoulos, and D. Papaconstantopoulos, “Wave-vector-dependent Stoner approach to band ferromagnetism in Ni,” Phys. Rev. B: Condens. Matter 55, 11391–11394 (1997).

    Article  Google Scholar 

  68. J. A. Hertz, “Critical spin fluctuations in itinerant electron ferromagnets,” Int. J. Magn. 1, 253–269 (1971).

    Google Scholar 

  69. K. Murata and S. Doniach, “Theory of magnetic fluctuations in itinerant ferromagnets,” Phys. Rev. Lett. 29, 285–288 (1972).

    Article  Google Scholar 

  70. G. Lonzarich and L. Taillefer, “Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals,” J. Phys. C: Solid State Phys. 18, 4339–4371 (1985).

    Article  Google Scholar 

  71. Y. Takahashi, “On the origin of the Curie–Weiss law of the magnetic susceptibility in itinerant electron ferromagnetism,” J. Phys. Soc. Jpn. 55, 3553–3573 (1986).

    Article  Google Scholar 

  72. Y. Takahashi, “Quantum spin fluctuation theory of the magnetic equation of state of weak itinerant-electron ferromagnets,” J. Phys.: Condens. Matter 13, 6323–6358 (2001).

    Google Scholar 

  73. B. I. Reser and N. B. Melnikov, “Problem of temperature dependence in the dynamic spin-fluctuation theory for strong ferromagnets,” J. Phys.: Condens. Matter 20, 285205 (2008).

    Google Scholar 

  74. N. B. Melnikov and B. I. Reser, “Instability analysis for the system of nonlinear equations of the dynamic spin-fluctuation theory,” in Proc. Dynamic Systems and Applications (Dynamic, Atlanta, 2008), Vol. 5, pp. 312–316.

    Google Scholar 

  75. B. I. Reser, V. I. Grebennikov, and N. B. Melnikov, “Temperature hysteresis in the dynamic spin-fluctuation theory for strong ferromagnets,” Solid State Phenom. 152–153, 579–582 (2009).

    Article  Google Scholar 

  76. T. Poston and I. Stewart, Catastrophe Theory and its Applications (Dover, New York, 1998).

    Google Scholar 

  77. E. F. Wassermann, “Invar: Moment-volume instabilities in transition metals and alloys”, in Ferromagnetic Materials, Ed. by K.H.J. Buschow and E.P. Wohlfarth (Elsevier, Amsterdam, 1990), Vol. 5, pp. 237–322

    Google Scholar 

  78. E. Wassermann, “The Invar problem,” J. Magn. Magn. Mater. 100, 346–362 (1991).

    Article  Google Scholar 

  79. M. Shiga, “Invar alloys,” in Materials Science and Technology, Ed. by R. Cahn, P. Haasen, and E. Kramer, (VCH, Weinheim, 1994). Vol. 3B, Part II, p. 159.

    Google Scholar 

  80. The Invar Effect: A Centennial Symposium, Ed. by J. Wittenauer (The Minerals, Metals and Mater. Soc., Warrendale, 1997).

  81. D. Johnson, F. Pinski, and G. Stocks, “Self-consistent electronic structure of disordered Fe0.65Ni0.35,” J. Appl. Phys. 57, 3018–3020 (1985).

    Article  Google Scholar 

  82. J. Crangle and G. C. Hallam, “The magnetism of fcc and bcc iron–nickel alloys,” Proc. R. Soc. Lond. A 272, 119–132 (1963).

    Article  Google Scholar 

  83. G. Scott, “Magnetomechanical determination of gyromagnetic ratios,” J. Phys. Soc. Jpn. 17, Suppl. B-I, 372–375 (1962).

    Google Scholar 

  84. Y. Prokopjev and B. I. Reser, “A single-site spin correlation function in paramagnetic iron,” J. Phys.: Condens. Matter 3, 6055–6067 (1991).

    Google Scholar 

  85. Y. Takahashi and H. Nakano, “Magnetovolume effect of itinerant electron ferromagnets,” J. Phys.: Condens. Matter 18, 521–556 (2006).

    Google Scholar 

  86. J. Zinn-Justin, Path Integrals in Quantum Mechanics (Oxford University Press, Oxford, 2004).

    Book  Google Scholar 

  87. H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics (Oxford University Press, Oxford, 2004), 3rd ed.

    Google Scholar 

  88. D. Zubarev and Y. Tserkovnikov, “The method of Green’s two-time temperature functions in equilibrium and nonequilibrium statistical mechanics,” Proc. Steklov Inst. Math. 175, 139–185 (1988).

    Google Scholar 

  89. N. Plakida, “The two-time Green’s function and the diagram technique,” Theor. Math. Phys. 168, 1303–1317 (2011).

    Article  Google Scholar 

  90. V. I. Grebennikov, “A fluctuating field theory for systems of localized magnetic moments,” Solid State Phenom. 152–153, 563–566 (2009).

  91. N. B. Melnikov and G. Paradezhenko, “Magnetic phase transitions in the spin-fluctuation theory,” Theor. Math. Phys. 183, 486–497 (2015).

    Article  Google Scholar 

  92. N. B. Melnikov and G. Paradezhenko, “Problem of phase transition in spin-fluctuation theory,” Phys. Procedia 75, 731–738 (2015).

    Article  Google Scholar 

  93. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd ed. (Nauka, Moscow, 1976, 1995; Pergamon, Oxford, 1980, 1985)

    Google Scholar 

  94. A. Patashinskii and V. Pokrovskii, Fluctuation Theory of Phase Transitions (Pergamon, Oxford, 1979).

    Google Scholar 

  95. A. Larkin and A. Varlamov, Theory of Fluctuations in Superconductors (Oxford University Press, Oxford, 2009).

    Google Scholar 

  96. B. I. Reser, N. B. Melnikov, and V. I. Grebennikov, “Beyond Gaussian approximation in the spin-fluctuation theory of metallic ferromagnetism,” J. Phys.: Confer. Ser. 200, 012163 (2010).

    Google Scholar 

  97. J. Schrieffer, W. Evanson, and S. Wang, “Localized spin fluctuations in metals,” J. Phys. Colloq. 32, 19–25 (1971).

    Article  Google Scholar 

  98. J. A. Hertz, “Quantum critical phenomena,” Phys. Rev. B: Solid State 14, 1165–1184 (1976).

    Article  Google Scholar 

  99. P. Stamp, “Spin fluctuation theory in condensed quantum systems,” J. Phys. F: Met. Phys. 15, 1829–1865 (1985).

    Article  Google Scholar 

  100. B. I. Reser, N. B. Melnikov, and V. I. Grebennikov, “Extended dynamic spin-fluctuation theory with application to iron,” Solid State Phenom. 190, 55–58 (2012).

    Article  Google Scholar 

  101. N. B. Melnikov, B. I. Reser, and V. I. Grebennikov, “Local moments in the dynamic spin-fluctuation theory of metallic magnetism,” Solid State Phenom. 190, 43–46 (2012).

    Article  Google Scholar 

  102. V. Crisan, P. Entel, H. Ebert, H. Akai, D. Johnson, and J. Staunton, “Magnetochemical origin for Invar anomalies in iron-nickel alloys,” Phys. Rev. B: Condens. Matter 66, 014416 (2002).

    Article  Google Scholar 

  103. A. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, “Magnetic state, magnetovolume effects, and atomic order in Fe65Ni35 Invar alloy: A first principles study,” Phys. Rev. B: Condens. Matter 76, 014420 (2007).

    Article  Google Scholar 

  104. M. Matsui, K. Adachi, and S. Chikazumi, “Magnetic and thermal anomalies of Invar alloys,” J. Appl. Phys. 51, 6319–6325 (1980).

    Article  Google Scholar 

  105. M. Shiga and Y. Nakamura, “Moment-induced magnetic scattering and magnetovolume effect in Fe65(Ni1-xMnx)35 alloys,” J. Phys. Soc. Jpn. 26, 24–32 (1969).

    Article  Google Scholar 

  106. H. Hasegawa, “A theory of magneto-volume effects of itinerant-electron magnets: I. Spontaneous volume magnetostriction,” J. Phys. C: Solid State Phys. 14, 2793–2808 (1981).

    Article  Google Scholar 

  107. Y. Kakehashi, “Theory of the Invar effect in FeNi alloy,” J. Phys. Soc. Jpn. 50, 2236–2245 (1981).

    Article  Google Scholar 

  108. T. Moriya and K. Usami, “Magneto-volume effect and Invar phenomena in ferromagnetic metals,” Solid State Commun. 34, 95–99 (1980).

    Article  Google Scholar 

  109. M. Shiga in Physics of Transition Metals 1980, Inst. Phys. Conf. Ser. No. 55, Ed. by P. Rhodes (IOP, London, 1981), p. 241

  110. M. Shiga, “Magnetovolume effects in ferromagnetic transition metals,” J. Phys. Soc. Jpn. 50, 2573–2580, 1981.

    Article  Google Scholar 

  111. F. Bloch, “Zur Theorie des Ferromagnetismus,” Z. Physik 61, 206–219 (1930)

    Article  Google Scholar 

  112. F. Bloch, “Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika,” Z. Physik 74, 295–335 (1932).

    Article  Google Scholar 

  113. T. Moriya and A. Kawabata, “Effect of spin fluctuations on itinerant electron ferromagnetism. II,” J. Phys. Soc. Jpn. 35, 669–676 (1973).

    Article  Google Scholar 

  114. T. Izuyama, D. Kim, and R. Kubo, “Band theoretical interpretation of neutron diffraction phenomena in ferromagnetic metals,” J. Phys. Soc. Jpn. 18, 1025–1042 (1963).

    Article  Google Scholar 

  115. J. Cooke, J. Lynn, and H. Davis, “Calculations of the dynamic susceptibility of nickel and iron,” Phys. Rev. B: Condens. Matter 21, 4118–4131 (1980).

    Article  Google Scholar 

  116. J. Callaway, A. Chatterjee, S. Singhal, and A. Ziegler, “Magnetic susceptibility of ferromagnetic metals: Application to nickel,” Phys. Rev. B: Condens. Matter 28, 3818–3830 (1983).

    Article  Google Scholar 

  117. N. B. Melnikov and B. I. Reser, “Low-temperature magnetism of metals in the dynamic spin-fluctuation theory,” J. Supercond. Nov. Magn. 28, 797–803 (2015).

    Article  Google Scholar 

  118. N. B. Melnikov and B. I. Reser, “Low-temperature spin fluctuations beyond spin waves,” Solid State Phenom. 233–234, 20–24 (2015).

    Article  Google Scholar 

  119. J. Donohue, The Structure of the Elements (Wiley, New York, 1974).

    Google Scholar 

  120. A. Aldred and P. Froehle, “Temperature and field dependence of the magnetization of iron,” Int. J. Magn. 2, 195–203 (1972).

    Google Scholar 

  121. P. Riedi, “Temperature dependence of the hyperfine field and hyperfine coupling constant of iron,” Phys. Rev. B: Solid State 8, 5243–5246 (1973).

    Article  Google Scholar 

  122. R. Pauthenet, “Experimental verification of spin-wave theory in high fields,” J. Appl. Phys. 53, 8187–8192 (1982).

    Article  Google Scholar 

  123. U. Köbler, “Temperature dependence of the spontaneous magnetization of bcc bulk iron, amorphous iron and thin iron films,” J. Phys.: Condens. Matter 14, 8861–8880 (2002).

    Google Scholar 

  124. J. Lynn, N. Rosov, M. Acet, and H. Bach, “Polarization analysis of the magnetic excitations in Fe65Ni35 Invar,” J. Appl. Phys. 75, 6069–6071 (1994).

    Article  Google Scholar 

  125. E. Wassermann and M. Acet, “Invar and anti-Invar: Magnetovolume effects in Fe-based alloys revisited,” in Magnetism and Structure in Functional Materials, Ed. by A. Planes, L. Manosa, and A. Saxena (Springer, Berlin, 2005) pp. 177–198.

    Chapter  Google Scholar 

  126. A. Okorokov, S. Grigor’ev, V. Runov, G. Gordeev, Y. Chetverikov, and G. Kopitsa, “New magnetic phenomena and polarized neutrons,” J. Surf. Invest. 1, 542–555 (2007).

    Google Scholar 

  127. Y. Ishikawa, S. Onodera, and K. Tajima, “Magnetic excitations in Invar alloys Fe65Ni35 and Fe3Pt,” J. Magn. Magn. Mater. 10, 183–190 (1979).

    Article  Google Scholar 

  128. J. Slater, “A simplification of the Hartree–Fock method,” Phys. Rev. 81, 385–390 (1951).

    Article  Google Scholar 

  129. H. Mook and R. Nicklow, “Neutron scattering investigation of the magnetic excitations in iron,” Phys. Rev. B: Solid State 7, 336–342 (1973).

    Article  Google Scholar 

  130. M. Pajda, J. Kudrnovsky, I. Turek, V. Drchal, and P. Bruno, “Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni,” Phys. Rev. B: Condens. Matter 64, 174402 (2001).

    Article  Google Scholar 

  131. P. Buczek, A. Ernst, and L. Sandratskii, “Different dimensionality trends in the Landau damping of magnons in iron, cobalt and nickel: Time dependent density functional study,” Phys. Rev. B: Condens. Matter 84, 174418 (2011).

    Article  Google Scholar 

  132. I. Nakai, “Field dependence of the Stoner-type contribution to the magnetization of fcc Fe–Ni alloys,” J. Phys. Soc. Jpn., vol. 59, 2211–2215 (1990).

    Article  Google Scholar 

  133. H. A. Mook, “Neutron scattering studies of magnetic excitations in itinerant magnets,” in Spin Waves and Magnetic Excitations, Ed. by A. Borovik-Romanov and S. Sinha (Elsevier, Amsterdam, 1988), pp. 425–478.

    Chapter  Google Scholar 

  134. O. Gunnarsson, “Band model for magnetism of transition metals in the spin-density-functional formalism,” J. Phys. F: Met. Phys. 6, 587–606 (1976)

    Article  Google Scholar 

  135. O. Gunnarsson, “The Stoner model in the spin-density-functional formalism,” Physica B 91, 329–336 (1977).

    Article  Google Scholar 

  136. U. Poulsen, J. Kollár, and O. Andersen, “Magnetic and cohesive properties from canonical bands,” J. Phys. F: Met. Phys. 6, L241–L247 (1976).

    Article  Google Scholar 

  137. O. Andersen, J. Madsen, U. Poulsen, O. Jepsen, and J. Kollár, “Magnetic ground state properties of transition metals,” Physica B 86–88, 249–256 (1977).

  138. J. Janak, “Uniform susceptibilities of metallic elements,” Phys. Rev. B: Solid State 16, 255–262 (1977).

    Article  Google Scholar 

  139. U. von Barth and L. Hedin, “A local exchange-correlation potential for the spin polarized case: I,” J. Phys. C: Solid State Phys. 5, 1629–1642 (1972).

    Article  Google Scholar 

  140. O. Gunnarsson and B. Lundqvist, “Exchange and correlation in atoms, molecules, and solids by the spindensity-functional formalism,” Phys. Rev. B: Solid State 13, 4274–4298 (1976).

    Article  Google Scholar 

  141. W. Kohn and P. Vashishta, “General density functional theory,” in Theory of the Inhomogeneous Electron Gas, Ed. by S. Lundqvist and N. March (Plenum, New York, 1983), pp. 79–147.

    Chapter  Google Scholar 

  142. R. Jones and O. Gunnarsson, “The density functional formalism, its applications and prospects,” Rev. Mod. Phys. 61, 689–746 (1989).

    Article  Google Scholar 

  143. B. I. Reser and Y. I. Prokopjev, “Local magnetic characteristics of ferromagnetic metals at high temperatures: I. Theory,” Phys. Met. Metallogr. 74, 123–129 (1992).

    Google Scholar 

  144. P. Brown, H. Capellmann, J. Déportes, D. Givord, and K. Ziebeck, “Observations of ferromagnetic correlations at high temperatures in paramagnetic iron,” J. Magn. Magn. Mater. 30, 243–248 (1982)

    Article  Google Scholar 

  145. P. Brown, H. Capellmann, J. Déportes, D. Givord, and K. Ziebeck, “Ferromagnetic correlations in both the a and phases of paramagnetic iron,” J. Magn. Magn. Mater. 30, 335–339 (1982)

    Article  Google Scholar 

  146. P. Brown, H. Capellmann, J. Déportes, D. Givord, and K. Ziebeck, “Spatial correlation of magnetization in the paramagnetic phases of iron and nickel,” J. Magn. Magn. Mater. 31–34, 295–296 (1983).

    Article  Google Scholar 

  147. P. Brown, H. Capellmann, J. Deportes, D. Givord, S. Johnson, J. Lynn, and K. Ziebeck, “The magnetic response of paramagnetic Fe at high energy transfers,” J. Phys. (Paris) 46, 827–830 (1985).

    Article  Google Scholar 

  148. Metallic Magnetism, Ed. by H. Capellmann, (Springer, Berlin, 1987).

  149. A. Holden, V. Heine, and J. Samson, “Magnetic contributions to thermal expansion of transition metals: Implications for local moments above TC,” J. Phys. F: Met. Phys. 14, 1005–1020 (1984).

    Article  Google Scholar 

  150. B. I. Reser, E. Rosenfeld, and E. Shipitsyn, “Spin correlators in the one-electron approximation applied to bcc iron,” Phys. Met. Metallogr. 69, 48–57 (1990).

    Google Scholar 

  151. H. Hasegawa, “Wavevector-dependent spin susceptibility of iron above the Curie temperature,” J. Phys. F: Met. Phys. 13, 2655–2675 (1983).

    Article  Google Scholar 

  152. H. Hasegawa, “Wavevector-dependent spin susceptibility of nickel above the Curie temperature,” J. Phys. F: Met. Phys. 14, 1235–1247 (1984).

    Article  Google Scholar 

  153. B. I. Reser, “Local magnetic characteristics of ferromagnetic metals at high temperatures: II. Numerical calculations and comparison with experiment,” Phys. Met. Metallogr. 77, 451–458 (1994).

    Google Scholar 

  154. P. James, O. Eriksson, B. Johansson, and I. Abrikosov, “Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu,” Phys. Rev. B: Condens. Matter 59, 419–430 (1999)

    Article  Google Scholar 

  155. P. Mohn, “A century of zero expansion,” Nature 400, 18–19 (1999)

    Article  Google Scholar 

  156. M. van Schilfgaarde, I. A. Abrikosov, and B. Johansson, “Origin of the Invar effect in iron-nickel alloys,” Nature 400, 46–49 (1999).

    Article  Google Scholar 

  157. P. Weinberger, L. Szunyogh, C. Blaas, C. Sommers, and P. Entel, “Magnetic properties of bulk NicFe1-c alloys, their free surfaces, and related spin-valve systems,” Phys. Rev. B: Condens. Matter 63, 094417 (2001).

    Article  Google Scholar 

  158. P. Brown, K.-U. Neumann, and K. Ziebeck, “The temperature dependence of the magnetization distribution in Fe0.65Ni0.35 Invar: Incompatibility of the two-state model,” J. Phys.: Condens. Matter 13, 1563–1569 (2001).

    Google Scholar 

  159. J. Rueff, A. Shukla, A. Kaprolat, M. Krisch, M. Lorenzen, F. Sette, and R. Verbeni, “Magnetism of Invar alloys under pressure examined by inelastic X-ray scattering,” Phys. Rev. B: Condens. Matter 63, 132409 (2001).

    Article  Google Scholar 

  160. T. Moriya, “The effect of electron-electron interaction on the nuclear spin relaxation in metals,” J. Phys. Soc. Jpn. 18, 516–520 (1964).

    Article  Google Scholar 

  161. G. Carter, L. Bennett, and D. Kahan, Metallic Shifts in NMR (Pergamon, Oxford, 1977).

    Google Scholar 

  162. P. Ségransan, Y. Chabre, and W. Clark, “Nuclear spin relaxation and the Knight shift of 61Ni metal in the paramagnetic solid and liquid phases,” J. Phys. F: Met. Phys. 8, 1513–1524 (1978).

    Article  Google Scholar 

  163. M. Shaham, J. Barak, U. El-Hanany, and W. W. Warren, “NMR study of the 3d ferromagnetic metals: Critical region and paramagnetic phase,” Phys. Rev. B: Condens. Matter 22, 5400–5419 (1980).

    Article  Google Scholar 

  164. J. Korringa, “Nuclear magnetic relaxation and resonance line shift in metals,” Physica 16, 601–610 (1950).

    Article  Google Scholar 

  165. Y. Obata, “Nuclear magnetic relaxation in transition metals,” J. Phys. Soc. Jpn. 18, 1020–1024 (1963).

    Article  Google Scholar 

  166. Y. Yafet and V. Jaccarino, “Nuclear spin relaxation in transition metals; Core polarization,” Phys. Rev. 133, A1630–A1637 (1964).

    Article  Google Scholar 

  167. T. Moriya, “Nuclear magnetic relaxation in ferromagnetic transition metals,” J. Phys. Soc. Jpn. 19, 681–687 (1964).

    Article  Google Scholar 

  168. V. J. N. Kaplan and J. Wernick, “Nuclear relaxation studies of impurity moments in ferromagnetic metals,” Phys. Rev. Lett. 16, 1142–1145 (1966).

    Article  Google Scholar 

  169. R. Walstedt, V. Jaccarino, and N. Kaplan, “Nuclear magnetic relaxation in ferromagnetic transition metals,” J. Phys. Soc. Jpn. 21, 1843–1843 (1966).

    Article  Google Scholar 

  170. M. Salamon, “Impurity nucleus relaxation in ferromagnetic metals,” J. Phys. Soc. Jpn. 21, 2746–2747 (1966).

    Article  Google Scholar 

  171. M. Weger, E. Hahn, and A. Portis, “Transient excitation of nuclei in ferromagnetic metals,” J. Appl. Phys. 32, 124S–125S (1961).

    Article  Google Scholar 

  172. M. Weger, “Longitudinal nuclear magnetic relaxation in ferromagnetic iron, cobalt, and nickel,” Phys. Rev. 128, 1505–1511 (1962).

    Article  Google Scholar 

  173. V. Jaccarino, N. Kaplan, R. Walstedt, and J. Wernick, “Field dependence of nuclear relaxation in ferromagnetic metals,” Phys. Lett. 23, 514–515 (1966).

    Article  Google Scholar 

  174. H. Akai, “Nuclear spin-lattice relaxation of impurities in ferromagnetic iron,” Hyperfine Interactions 43, 255–270 (1988).

    Article  Google Scholar 

  175. H. Akai, M. Akai, S. Blügel, B. Drittler, H. Ebert, K. Terakura, R. Zeller, and P. Dederichs, “Theory of hyperfine interactions in metals,” Prog. Theor. Phys. (Suppl.) 101, 11–77 (1990).

    Article  Google Scholar 

  176. G. Seewald, E. Hagn, and E. Zech, “Observation of a nuclear-magnon contribution to the nuclear spin-lattice relaxation of 191Pt in ferromagnetic cobalt,” Phys. Rev. Lett. 78, 5002–5005 (1997).

    Article  Google Scholar 

  177. T. Funk, E. Beck, W. Brewer, C. Bobek, and E. Klein, “Systematics of the nuclear spin-lattice relaxation rates of transition-element impurities in Fe,” J. Magn. Magn. Mater. 195, 406–419 (1999).

    Article  Google Scholar 

  178. S. Ivanov and M. Kurkin, “Relaxation properties of the nuclear spins in magnets,” in Dynamic and Kinetic Properties of Magnets, Ed. by S. V. Vonsovskii and E. Turov (Nauka, Moscow, 1986), p. 223 [in Russian].

    Google Scholar 

  179. H. Capellmann, “Ferromagnetism and strong correlations in metals,” J. Phys. F: Met. Phys. 4, 1466–1476 (1974)

    Article  Google Scholar 

  180. H. Capellmann, “Theory of itinerant ferromagnetism in the 3d transition metals,” Z. Phys. B 34, 29–35 (1979).

    Article  Google Scholar 

  181. V. Korenman, J. Murray, and R. Prange, “Local-band theory of itinerant ferromagnetism. I. Fermi-liquid theory,” Phys. Rev. B: Condens. Matter 16, 4032–4047 (1977)

    Article  Google Scholar 

  182. V. Korenman, J. Murray, and R. Prange, “Local-band theory of itinerant ferromagnetism. II. Spin waves,” Phys. Rev. B: Solid State 16, 4048–4057 (1977)

    Article  Google Scholar 

  183. V. Korenman, J. Murray, and R. Prange, “Local-band theory of itinerant ferromagnetism. III. Nonlinear Landau-Lifshitz equations,” Phys. Rev. B: Solid State 16, 4058–4062 (1977).

    Article  Google Scholar 

  184. D. Edwards, “Some current problems in itinerant electron magnetism,” J. Magn. Magn. Mater. 15–18, 262–268 (1980).

    Article  Google Scholar 

  185. Y. Kakehashi and M. Patoary, “First-principles dynamical coherent-potential approximation approach to the ferromagnetism of Fe, Co, and Ni,” J. Phys. Soc. Jpn. 80, 034706 (2011).

    Article  Google Scholar 

  186. S. Maleyev, “Polarized neutron scattering in magnets,” Phys.-Usp. 45, 569–596 (2002).

    Article  Google Scholar 

  187. J. Schweizer, “Polarized neutrons and polarization analysis,” in Neutron Scattering from Magnetic Materials, Ed. by T. Chatterji (Elsevier, Amsterdam, 2006), ch. 4.

    Google Scholar 

  188. N. Plakida, High-Temperature Cuprate Superconductors (Springer, Berlin, 2010).

    Book  Google Scholar 

  189. H. Mook and J. Lynn, “Measurements of the magnetic excitations above TC in iron and nickel,” J. Appl. Phys. 57, 3006–3011 (1985).

    Article  Google Scholar 

  190. J. Hubbard, “Panel discussion on itinerant electron magnetism,” in Physics of Transition Metals 1980, Inst. Phys. Conf. Ser. No. 55, Ed. by P. Rhodes (IOP, London, 1981), Ch. 15, p. 669.

    Google Scholar 

  191. V. Antropov, “Time-dependent density-functional spin dynamics and its application for Fe and Ni,” J. Appl. Phys. 97, 10A704 (2005)

    Article  Google Scholar 

  192. V. Antropov, “Magnetic short-range order above the Curie temperature of Fe and Ni,” Phys. Rev. B: Condens. Matter 72, 140406 (2005).

    Article  Google Scholar 

  193. X. Tao, D. Landau, T. Schulthess, and G. Stocks, “Spin waves in paramagnetic bcc iron: Spin dynamics simulations,” Phys. Rev. Lett. 95, 087207 (2005)

    Article  Google Scholar 

  194. X. Tao, D. Landau, T. Schulthess, and G. Stocks, “Spin dynamics simulations of bcc iron,” J. Appl. Phys. 97, 10A722 (2005).

    Article  Google Scholar 

  195. N. B. Melnikov and B. I. Reser, “Short-range order above TC in ferromagnetic metals,” Phys. Procedia 75, 739–746 (2015).

    Article  Google Scholar 

  196. N. B. Melnikov and B. I. Reser, “Short-range order above the Curie temperature in the dynamic spin-fluctuation theory,” J. Magn. Magn. Mater. 397, 347–351 (2016).

    Article  Google Scholar 

  197. N. B. Melnikov, B. I. Reser, and G. Paradezhenko, “Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments,” J. Magn. Magn. Mater. 411, 133–139 (2016).

    Article  Google Scholar 

  198. N. B. Melnikov, G. Paradezhenko, and B. I. Reser, “Spin-density correlations and magnetic neutron scattering in ferromagnetic metals,” Theor. Math. Phys. 191, in press (2017).

  199. K. Ziebeck and P. Brown, “Measurement of the paramagnetic response function in the weak itinerant magnetic compound MnSi using polarised neutron scattering,” J. Phys. F: Metal Phys. 10, 2015–2024 (1980).

    Article  Google Scholar 

  200. G. Shirane, P. Böni, and J. Wicksted, “Paramagnetic scattering from Fe (3.5 at. % Si): Neutron measurements up to the zone boundary,” Phys. Rev. B: Condens. Matter 33, 1881–1885 (1986).

    Article  Google Scholar 

  201. R. Elliott, “Theory of neutron scattering by conduction electrons in a metal and on the collective electron model of a ferromagnet,” Proc. R. Soc. Lond. A 235, 289–304 (1956).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Melnikov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, N.B., Reser, B.I. Magnetism of metals in the dynamic spin-fluctuation theory. Phys. Metals Metallogr. 117, 1328–1383 (2016). https://doi.org/10.1134/S0031918X16130020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16130020

Keywords

Navigation