Skip to main content
Log in

Mutual spatiotemporal coherence of optical fields in an amplitude-splitting interferometer

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We have considered cross correlations of wave perturbations formed by optical fields at different points of space at the exit of an interferometer with the splitting of the amplitude of the initial wave field. Expressions for the longitudinal spatiotemporal cross-correlation function of perturbations on the optical axis of a Michelson interferometer have been obtained and analyzed. We have determined spatial and temporal intervals in which the wave fields excite mutually coherent perturbations in the exit channel of the interferometer in the free space and in the image space of the lens system. We have found that, in the free space, mutually correlated perturbations arise simultaneously in identical longitudinal intervals, whereas, in the image space, they arise at different times in spatial and temporal intervals varying along the optical axis of the lens. The influence of cross correlations of the wave fields on the interferometer signal has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, New York, 1995). doi 10.1017/CBO9781139644105

    Book  Google Scholar 

  3. J. W. Goodman, Statistical Optics (Wiley, New York, 2000).

    Google Scholar 

  4. S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chirkin, Statistical Radiophysics and Optics. Random Oscillations and Waves in Linear Systems (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  5. Optical Coherence Tomography: Technology and Applications, Ed. by W. Drexler and J. G. Fujimoto, 2nd ed. (Springer, Berlin, Heidelberg, New York, 2015). doi 10.1007/978-3-319-06419-2

  6. Handbook of Coherent-Domain Optical Methods, Ed. by V. Tuchin, 2nd ed. (Springer, Heidelberg, Dordrecht, London, New York, 2013). doi 10.1007/978-1-4614-5176-1

  7. Handbook of Full-Field Optical Coherence Microscopy: Technology and Applications, Ed. by A. Dubois (Pan Stanford, Singapore, 2016). doi 10.4032/9789814669177

  8. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, Appl. Opt. 41, 805 (2002). doi 10.1364/AO.41.000805

    Article  ADS  Google Scholar 

  9. O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, Opt. Express 14, 7299 (2006). doi 10.1364/OE.14.007299

    Article  ADS  Google Scholar 

  10. A. Safrani and I. Abdulhalim, Appl. Opt. 50, 3012 (2011). doi 10.1364/AO.50.003021

    Article  ADS  Google Scholar 

  11. P. Pavlicek, M. Halouzka, Z. Duan, and M. Takeda, Appl. Opt. 48, H40 (2009). doi 10.1364/AO.48.000H40

    Article  Google Scholar 

  12. W. Gao, J. Mod. Opt. 62, 1764 (2015). doi 10.1080/09500340.2014.952689

    Article  ADS  Google Scholar 

  13. J. Rosen and A. Yariv, Opt. Commun. 117, 8 (1995). doi 10.1016/0030-4018(95)00086-N

    Article  ADS  Google Scholar 

  14. M. Gokhler and J. Rosen, Opt. Commun. 252, 22 (2005). doi 10.1016/j.optcom.2005.04.007

    Article  ADS  Google Scholar 

  15. I. Zeylikovich, Appl. Opt. 47, 2171 (2008). doi 10.1364/AO.47.002171

    Article  ADS  Google Scholar 

  16. I. Abdulhalim, Ann. Phys. 524, 787 (2012). doi 10.1002/andp.201200106

    Article  Google Scholar 

  17. V. Ryabukho, D. Lyakin, and M. Lobachev, Opt. Lett. 30, 224 (2005). doi 10.1364/OL.30.000224

    Article  ADS  Google Scholar 

  18. V. P. Ryabukho, D. V. Lyakin, and V. V. Lychagov, Opt. Spectrosc. 100, 724 (2006). doi 10.1134/S0030400X06050146

    Article  ADS  Google Scholar 

  19. V. P. Ryabukho, D. V. Lyakin, and V. V. Lychagov, Opt. Spectrosc. 102, 918 (2007). doi 10.1134/S0030400X07060197

    Article  ADS  Google Scholar 

  20. A. Ahmad, V. Dubey, D. S. Mehta, and V. Srivastava, Appl. Phys. Lett. 106, 093701 (2015). doi 10.1063/ 1.4913870

    Article  ADS  Google Scholar 

  21. J. de Groot, Adv. Opt. Photon. 7, 1 (2015). doi 10.1364/ AOP.7.000001

    Article  Google Scholar 

  22. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, Appl. Opt. 43, 2874 (2004). doi 10.1364/AO.43.002874

    Article  ADS  Google Scholar 

  23. K. Creath and G. Goldstein, Biomed. Opt. Express 3, 2866 (2012). doi 10.1364/BOE.3.002866

    Article  Google Scholar 

  24. D. V. Lyakin and V. P. Ryabukho, Quantum Electron. 43, 949 (2013). doi 10.1070/QE2013v043n10ABEH015187

    Article  ADS  Google Scholar 

  25. G. N. Vishnyakov, G. G. Levin, V. L. Minaev, and I. Yu. Tselmina, Opt. Spectrosc. 116, 156 (2014). doi 10.1134/S0030400X14010226

    Article  Google Scholar 

  26. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic Press, New York, 1972).

    Google Scholar 

  27. S. N. Mikhailenko, V. I. Serdyukov, L. N. Sinitsa, and S. S. Vasilchenko, Opt. Spectrosc. 115, 814 (2013). doi 10.1134/S0030400X13120126

    Article  ADS  Google Scholar 

  28. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

    Google Scholar 

  29. G. R. Lokshin, Principles of Radiooptics, The School-Book (Intellekt, Dolgoprudnyi, 2009) [in Russian].

    Google Scholar 

  30. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics 2: Random Fields (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  31. V. P. Ryabukho, V. V. Lychagov, and D. V. Lyakin, Opt. Spectrosc. 107, 282 (2009). doi 10.1134/S0030400X09080190

    Article  ADS  Google Scholar 

  32. V. P. Ryabukho, D. V. Lyakin, A. A. Grebenyuk, and S. S. Klykov, J. Opt. 15, 025405 (2013). doi 10.1088/2040-8978/15/2/025405

    Article  ADS  Google Scholar 

  33. Yu. V. Kolomiitsov, Interferometers. Engineer Theory Principles and Application (Mashinostroenie, Leningrad, 1976) [in Russian].

    Google Scholar 

  34. D. V. Lyakin and V. P. Ryabukho, Tech. Phys. Lett. 37, 45 (2011). doi 10.1134/S1063785011010068

    Article  ADS  Google Scholar 

  35. I. Abdulhalim, J. Opt. A: Pure Appl. Opt. 8, 952 (2006). doi 10.1088/1464-4258/8/11/004

    Article  ADS  Google Scholar 

  36. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, Opt. Commun. 281, 880 (2008). doi 10.1016/ j.optcom.2007.10.007

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ryabukho.

Additional information

Original Russian Text © D.V. Lyakin, P.V. Ryabukho, V.P. Ryabukho, 2017, published in Optika i Spektroskopiya, 2017, Vol. 122, No. 2, pp. 336–345.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyakin, D.V., Ryabukho, P.V. & Ryabukho, V.P. Mutual spatiotemporal coherence of optical fields in an amplitude-splitting interferometer. Opt. Spectrosc. 122, 329–337 (2017). https://doi.org/10.1134/S0030400X17020175

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X17020175

Navigation