Skip to main content
Log in

Structure-sensitive changes in the terahertz absorption spectra of merocyanine dye derivatives

  • Fundamental Problems of Optics—2008: Terahertz Optics and Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The low-frequency vibrational modes of the series of merocyanines (malononitrile derivative) have been investigated by pulsed terahertz spectroscopy. The terahertz absorption spectra are shown to contain both intermolecular and intramolecular vibrational modes in the range of 0.15–3.45 THz (5–115 cm−1). An unambiguous correlation is established between the purposeful modification of the molecular structure of merocyanine dyes and the change in their terahertz absorption spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2002), p. 337.

  2. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, J. Chem. Phys. A 106, 878 (2002).

    Article  Google Scholar 

  3. N. N. Brandt, A. Yu. Chikishev, A. V. Kargovsky, M. M. Nazarov, O. D. Parashchuk, D. A. Sapozhnikov, I. N. Smirnova, A. P. Shkurinov, and N. V. Sumbatyan, Vibr. Spectrosc. 47, 53 (2008).

    Article  Google Scholar 

  4. A. I. Kitaigorodsky, Molecular Crystals (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  5. J. W. Arthur and G. A. Mackenzie, J. Raman Spectrosc. 4, 353 (1976).

    Article  ADS  Google Scholar 

  6. N. B. Brandt and V. A. Kul’bachinskiĭ, Quasiparticles in Physics of Condensed State (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  7. R. S. Holford, J. Chem. Phys. 14, 8 (1946).

    Article  ADS  Google Scholar 

  8. D. F. Horing, J. Phys. Chem. 16, 1063 (1948).

    Article  Google Scholar 

  9. M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Kehler, A. G. Davies, and T. H. Linfield, Chem. Phys. Lett. 377, 256 (2003).

    Article  ADS  Google Scholar 

  10. P. Hermet, J.-L. Bantignies, D. Maurin, and J.-L. Sauvajol, Chem. Phys. Lett. 445, 47 (2007).

    Article  ADS  Google Scholar 

  11. D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason, and E. R. Brown, Chem. Phys. Lett. 440, 203 (2007).

    Article  ADS  Google Scholar 

  12. P. U. Jepsen and S. J. Clark, Chem. Phys. Lett. 442, 275 (2007).

    Article  ADS  Google Scholar 

  13. J. C. Decius, J. Chem. Phys. 23(7), 1290 (1955).

    Article  ADS  Google Scholar 

  14. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. B. Behera, Chem. Rev. 100, 1973 (2000).

    Article  Google Scholar 

  15. F. Meyers, S. R. Marder, and J. W. Perry, Chemistry of Advanced Materials. An Overeview, Ed. by L. V. Interrante and M. J. Hampden-Smith (Wiley, New York, 1998), p. 207.

    Google Scholar 

  16. X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).

    Article  ADS  Google Scholar 

  17. M. M. Nazarov, S. A. Makarova, A. P. Shkurinov, and O. G. Okhotnikov, Appl. Phys. Lett. 92, 021114 (2008).

    Article  ADS  Google Scholar 

  18. L. Duvillaret, F. Garet, and J.-L. Coutaz, J. Sel. Top. Quant. Electron. 2, 739 (1996).

    Article  Google Scholar 

  19. M. M. Nazarov, A. P. Shkurinov, V. V. Tuchin, and O. S. Zhernovaya, Proc. SPIE 6535, 65351J (2007).

    Article  Google Scholar 

  20. B. M. Fisher, H. Helm, and P. U. Jepsen, Proc. IEEE 95, 1592 (2007).

    Article  Google Scholar 

  21. D. G. Allis, J. A. Zeitler, P. F. Today, and T. M. Karter, Chem. Phys. Lett. 463, 84 (2008).

    Article  ADS  Google Scholar 

  22. T. M. Korter, R. Balu, M. B. Campbell, M. C. Beard, S. K. Gregurick, and E. J. Heilweil, Chem. Phys. Lett. 418, 65 (2006).

    Article  ADS  Google Scholar 

  23. O. Esenturk, A. Evans, and E. J. Heilweil, Chem. Phys. Lett. 442, 71 (2007).

    Article  ADS  Google Scholar 

  24. M. J. Frisch et al., Gaussian 03, Revision B.05 (Gaussian, Wallingford CT, 2003).

    Google Scholar 

  25. A. A. Granovsky, PC GAMESS, version 7.0; http://classic.chem.msu.su/gran/gamess/index.html.

  26. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  27. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  ADS  Google Scholar 

  28. V. I. Lebedev and A. L. Skorokhodov, Dokl. Akad. Nauk SSSR 45, 587 (1992).

    MathSciNet  Google Scholar 

  29. S.-J. Kwon, O-P. Kwon, M. Jazbinsek, V. Gramlich, and P. Gunter, Chem. Commun., 3729 (2006).

  30. P. Hermet, J.-L. Bantignies, D. Maurin, and J.-L. Sauvajol, Chem. Phys. Lett. 447, 47 (2007).

    Article  ADS  Google Scholar 

  31. S. K. Gularyan, G. E. Dobretsov, B. M. Polyak, V. Yu. Svetlichnyĭ, N. E. Zhukhlistova, B. M. Krasovitskiĭ, L. I. Kormilova, and V. E. Zavodnik, Izv. Ross. Akad. Nauk, Ser. Khim., No. 10, 1674 (2006).

  32. F. L. Gervasio, G. Cardini, P. R. Salvi, and V. Schettino, J. Phys. Chem. A 102, 2131 (1998).

    Article  Google Scholar 

  33. M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry (McGraw-Hill, New York, 1969).

    Google Scholar 

  34. T. Giamarchi, Chem. Rev. 104, 2440 (2004).

    Article  Google Scholar 

  35. Y. Shi and Li Wang, J. Phys. D. 38, 3741 (2005).

    Article  ADS  Google Scholar 

  36. M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Kohler, A. G. Dasvis, and E. H. Linfield, Chem. Phys. Lett. 377, 256 (2003).

    Article  ADS  Google Scholar 

  37. M. Walter, B. Ficher, M. Schall, H. Helm, and P. U. Jepsen, Chem. Phys. Lett. 332, 389 (2000).

    Article  ADS  Google Scholar 

  38. I. Jones, T. J. Reinsford, B. Fisher, and D. Abbott, Vibr. Spectrosc. 41, 144 (2006).

    Article  Google Scholar 

  39. B. Yu, F. Zeng, Y. Yang, Q. Xing, A. Chechin, I. Zeylikovich, and R. R. Alfano, Biophys. J. 86, 1649 (2004).

    Article  ADS  Google Scholar 

  40. M. Walther, P. Plochocka, B. Fisher, H. Helm, and P. U. Jepsen, Biopolymers (Biospectroscopy) 67, 310 (2002).

    Article  Google Scholar 

  41. T. M. Korter and D. F. Plasquellic, Chem. Phys. Lett. 385, 45 (2004).

    Article  ADS  Google Scholar 

  42. E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, Appl. Phys. Lett. 90, 061908 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Borodin.

Additional information

Original Russian Text © A.V. Borodin, V.Ya. Gayvoronsky, O.D. Kachkovsky, Ya.A. Prostota, A.V. Kargovskiĭ, M.M. Nazarov, D.A. Sapozhnikov, Yu.L. Slominskiĭ, I.N. Smirnova, A.P. Shkurinov, 2009, published in Optika i Spektroskopiya, 2009, Vol. 107, No. 4, pp. 535–545.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodin, A.V., Gayvoronsky, V.Y., Kachkovsky, O.D. et al. Structure-sensitive changes in the terahertz absorption spectra of merocyanine dye derivatives. Opt. Spectrosc. 107, 505–514 (2009). https://doi.org/10.1134/S0030400X09100026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X09100026

PACS numbers

Navigation