Skip to main content
Log in

ZNF143 is involved in CTCF-mediated chromatin interactions by cooperation with cohesin and other partners

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

ZNF143 is a ubiquitously expressed transcription factor conserved in vertebrates and might regulate the expression of numerous genes. But its function in mediating chromatin interactions remains elusive. By integrated analysis of public datasets, we provided evidence that a majority of ZNF143 binding sites (BSs) were involved in CTCF-mediated chromatin interaction networks (CTCF-CINs) by overlapping with cohesin-BSs and CTCF-BSs. We further showed that only a very few CTCF-CINs were associated with ZNF143 alone, whereas those associated with ZNF143 and cohesin simultaneously were highly overlapped with constitutive, conserved CTCF-BSs and enriched at boundaries of chromatin topologically associating domains. These observations implicate that as an important partner of CTCF, ZNF143 helps it establish the conserved chromatin structure by cooperating with cohesin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BS:

binding site

CIN:

chromatin interaction network

TAD:

topologically associating domain

References

  1. Schuster C., Myslinski E., Krol A., Carbon P. 1995. Staf, a novel zinc finger protein that activates the RNA polymerase III promoter of the selenocysteine tRNA gene. EMBO J. 14, 3777–3787.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ngondo-Mbongo R.P., Myslinski E., Aster J.C., Carbon P. 2013. Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11. Nucleic Acids Res. 41, 4000–4014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Izumi H., Yasuniwa Y., Akiyama M., Yamaguchi T., Kuma A., Kitamura N., Kohno K. 2011. Forced expression of ZNF143 restrains cancer cell growth. Cancers. 3, 3909–3920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chia N.Y., Chan Y.S., Feng B., Lu X., Orlov Y.L., Moreau D., Kumar P., Yang L., Jiang J., Lau M.S., Huss M., Soh B.S., Kraus P., Li P., Lufkin T., et al. 2010. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature. 468, 316–320.

    Article  CAS  PubMed  Google Scholar 

  5. Schaub M., Myslinski E., Schuster C., Krol A., Carbon P. 1997. Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III. EMBO J. 16, 173–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mercer T.R., Edwards S.L., Clark M.B., Neph S.J., Wang H., Stergachis A.B., John S., Sandstrom R., Li G., Sandhu K.S., Ruan Y., Nielsen L.K., Mattick J.S., Stamatoyannopoulos J.A. 2013. DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements. Nat. Genet. 45, 852–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang J., Lacroix L., Gamot A., Cuddapah S., Queille S., Lhoumaud P., Lepetit P., Martin P.G., Vogelmann J., Court F., Hennion M., Micas G., Urbach S., Bouchez O., Nollmann M., et al. 2014. Chromatin immunoprecipitation indirect peaks highlight long-range interactions of insulator proteins and Pol II pausing. Mol. Cell. 53, 672–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gerstein M.B., Kundaje A., Hariharan M., Landt S.G., Yan K.K., Cheng C., Mu X.J., Khurana E., Rozowsky J., Alexander R., Min R., Alves P., Abyzov A., Addleman N., Bhardwaj N., et al. 2012. Architecture of the human regulatory network derived from ENCODE data. Nature. 489, 91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xie D., Boyle A.P., Wu L., Zhai J., Kawli T., Snyder M. 2013. Dynamic trans-acting factor colocalization in human cells. Cell. 155, 713–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ong C.T., Corces V.G. 2014. CTCF: An architectural protein bridging genome topology and function. Nat. Rev. Genet. 15, 234–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gomez-Diaz E., Corces V.G. 2014. Architectural proteins: Regulators of 3D genome organization in cell fate. Trends Cell Biol. 24, 703–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Holwerda S.J., de Laat W. 2013. CTCF: The protein, the binding partners, the binding sites and their chromatin loops. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20120369.

    Article  PubMed  PubMed Central  Google Scholar 

  13. ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature. 489, 57–74.

    Article  Google Scholar 

  14. Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., Noble W.S. 2009. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Merkenschlager M., Odom D.T. 2013. CTCF and cohesin: Linking gene regulatory elements with their targets. Cell. 152, 1285–1297.

    Article  CAS  PubMed  Google Scholar 

  16. Michaud J., Praz V., James Faresse N., Jnbaptiste C.K., Tyagi S., Schutz F., Herr W. 2013. HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy. Genome Res. 23, 907–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vinckevicius A., Parker J.B., Chakravarti D. 2015. Genomic determinants of THAP11/ZNF143/HCFC1 complex recruitment to chromatin. Mol. Cell. Biol. 35, 4135–4146.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bailey S.D., Zhang X., Desai K., Aid M., Corradin O., Cowper-Sal Lari R., Akhtar-Zaidi B., Scacheri P.C., Haibe-Kains B., Lupien M. 2015. ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters. Nat. Commun. 2, 6186.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guo Y., Gifford D.K. 2015. Modular combinatorial binding among human trans-acting factors reveals direct and indirect factor binding. bioRxiv. doi http://dxdoiorg/doi 10.1101/02795310.1101/027953

    Google Scholar 

  20. Zhao Z., Tavoosidana G., Sjolinder M., Gondor A., Mariano P., Wang S., Kanduri C., Lezcano M., Sandhu K.S., Singh U., Pant V., Tiwari V., Kurukuti S., Ohlsson R. 2006. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347.

    Article  CAS  PubMed  Google Scholar 

  21. Dekker J., Rippe K., Dekker M., Kleckner N. 2002. Capturing chromosome conformation. Science. 295, 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  22. Botta M., Haider S., Leung I.X., Lio P., Mozziconacci J. 2010. Intra- and inter-chromosomal interactions correlate with CTCF binding genome wide. Mol. Syst. Biol. 6, 426.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Handoko L., Xu H., Li G., Ngan C.Y., Chew E., Schnapp M., Lee C.W., Ye C., Ping J.L., Mulawadi F., Wong E., Sheng J., Zhang Y., Poh T., Chan C.S., et al. 2011. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. 43, 630–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dixon J.R., Selvaraj S., Yue F., Kim A., Li Y., Shen Y., Hu M., Liu J.S., Ren B. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 485, 376–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sexton T., Yaffe E., Kenigsberg E., Bantignies F., Leblanc B., Hoichman M., Parrinello H., Tanay A., Cavalli G. 2012. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell. 148, 458–472.

    Article  CAS  PubMed  Google Scholar 

  26. Mathelier A., Zhao X., Zhang A.W., Parcy F., Worsley- Hunt R., Arenillas D.J., Buchman S., Chen C.Y., Chou A., Ienasescu H., Lim J., Shyr C., Tan G., Zhou M., Lenhard B., et al. 2014. JASPAR 2014: An extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 42, D142–D147.

    Article  CAS  PubMed  Google Scholar 

  27. Hou C., Dale R., Dean A. 2010. Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc. Natl. Acad. Sci. U. S. A. 107, 3651–3656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ren L., Wang Y., Shi M., Wang X., Yang Z., Zhao Z. 2012. CTCF mediates the cell-type specific spatial organization of the Kcnq5 locus and the local gene regulation. PLoS ONE. 7 (2), e31416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren L., Shi M., Wang Y., Yang Z., Wang X., Zhao Z. 2012. CTCF and cohesin cooperatively mediate the cell-type specific interchromatin interaction between Bcl11b and Arhgap6 loci. Mol. Cell. Biochem. 360, 243–251.

    Article  CAS  PubMed  Google Scholar 

  30. Heidari N., Phanstiel D.H., He C., Grubert F., Jahanbanian F., Kasowski M., Zhang M.Q., Snyder M.P. 2014. Genome-wide map of regulatory interactions in the human genome. Genome Res. 24, 1905–1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F.-X. Zhang or Z.-H. Zhao.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 3, pp. 496–503.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, BY., Shen, WL., Wang, D. et al. ZNF143 is involved in CTCF-mediated chromatin interactions by cooperation with cohesin and other partners. Mol Biol 50, 431–437 (2016). https://doi.org/10.1134/S0026893316030031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316030031

Keywords

Navigation