Skip to main content
Log in

Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Glutathione S-transferases (GSTs) are ubiquitous enzymes in animals and plants, and they are multifunctional proteins encoded by a large gene family. GSTs are involved in response to the oxidative stress including drought, salt, heavy metals, and so on. Under oxidative stress, the excessive reactive oxygen species (ROS) induce an increase in GST levels, and then the GSTs metabolize the toxic products of lipid peroxidation, damaged DNA and other molecules. Previously, a full-length cDNA of a novel zeta GST gene, PpGST, was characterized from fruit of Pyrus pyrifolia Nakai cv. Huobali. In the present study, a constitutive plant expression vector of PpGST was constructed and transferred into tobacco (Nicotiana tabacum L. cv Xanthi) to verify the function of PpGST. As a result, the PpGST gene was successfully integrated into the genome of the transgenic tobacco lines and expressed as expected in the transformants through Southern blotting and quantitative reverse transcription-polymerase chain reaction (QRT-PCR) analysis. Growth of T1 generation plants of PpGST transgenic lines and WT under non-stressful conditions was similar, however, the transgenic tobacco lines showed relatively normal growth under drought, NaCl, and cadmium (Cd) stresses. Furthermore, the T1 transgenic tobacco lines showed significantly slower superoxide anion production rate than the WT under abiotic stress. Simultaneously, the MDA content of each T1 transgenic tobacco plant was only slightly increased and significantly lower than that of the WT under drought, salt and Cd stress. Together with the GST activity of the transgenic tobacco lines, which was significantly increased under stressful conditions, as compared with that in WT, overexpression of PpGST in tobacco enhanced the tolerance of transgenic tobacco lines to oxidative damage caused by drought, NaCl, and Cd stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang W., Vinocur B., Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta. 218, 1–14.

    Article  PubMed  CAS  Google Scholar 

  2. Mohanpuria P., Rana N.K., Yadav S.K. 2007. Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ. Toxicol. 22, 368–374.

    Article  PubMed  CAS  Google Scholar 

  3. Sharma P., Jha A.B., Dubey R.S., Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26.

    Google Scholar 

  4. Le Martret B., Poage M., Shiel K., Nugent G.D., Dix P.J. 2011. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol. J. 9, 661–673.

    Article  PubMed  Google Scholar 

  5. Coleman J.O.D., Blake-Kalff M.M.A., Davies T.G.E. 1997. Detoxification of xenobiotics in plants: Chemical modification and vacuolar compartmentation. Trends Plant Sci. 4, 144–151.

    Article  Google Scholar 

  6. Dixon D.P., Davis B.G., Edwards R. 2002. Functional divergence in the glutathione transferase superfamily in plants. J. Biol. Chem. 277, 30859–30869.

    Article  PubMed  CAS  Google Scholar 

  7. Sappl P.G., Heazlewood J., Millar A.H. 2004. Untangling multi-gene families in plants by integrating proteomics into functional genomics. Phytochemistry. 65, 1517–1530.

    Article  PubMed  CAS  Google Scholar 

  8. Soranzo N., Sari Gorla M., Mizzi L., De Toma G., Frova C. 2004. Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol. Genet. Genomics. 271, 511–521.

    Article  PubMed  CAS  Google Scholar 

  9. Lan T., Yang Z.L., Yang X., Liu Y.J., Wang X.R., Zeng Q.Y. 2009. Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell. 21, 3749–3766.

    Article  PubMed  CAS  Google Scholar 

  10. Chi Y., Cheng Y., Vanitha J., Kumar N., Ramamoorthy R., Ramachandran S., Jiang S.Y. 2011. Expansion mechanisms and functional divergence of the glutathione Stransferase family in sorghum and other higher plants. DNA Res. 18, 1–16.

    Article  PubMed  CAS  Google Scholar 

  11. Frova C. 2003. The plant glutathione transferase gene family: Genomic structure, functions, expression and evolution. Physiol. Plantarum. 119, 469–479.

    Article  CAS  Google Scholar 

  12. Pascal S., Scalla R. 1999. Purification and characterization of a safener-induced glutathione S-transferase from wheat (Triticum aestivum). Physiol. Plant. 106, 17–27.

    Article  CAS  Google Scholar 

  13. Gallé A., Csiszár J., Secenji M., Guóth A., Cseuz L., Tari I., Györgyey J., Erdei L. 2009. Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J. Plant Physiol. 166, 1878–1891.

    Article  PubMed  Google Scholar 

  14. Lo Piero A.R., Mercurio V., Puglisi I., Petrone G. 2009. Gene isolation and expression analysis of two distinct sweet orange [Citrus sinensis L. (Osbeck)] tau-type glutathione transferases. Gene. 443, 143–150.

    Article  PubMed  Google Scholar 

  15. Sytykiewicz H. 2011. Expression patterns of glutathione transferase gene (GstI) in maize seedlings under juglone-induced oxidative stress. Int. J. Mol. Sci. 12, 7982–7995.

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi Y., Nagata T. 1992. parB: An auxin-regulated gene encoding glutathione S-transferase. Proc. Natl. Acad. Sci. U. S. A. 89, 56–59.

    Article  PubMed  CAS  Google Scholar 

  17. Jha B., Sharma A., Mishra A. 2011. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol. Biol. Rep. 38, 4823–4832.

    Article  PubMed  CAS  Google Scholar 

  18. Sappl P.G., Carroll A.J., Clifton R., Lister R., Whelan J., Harvey Millar A., Singh K.B. 2009. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J. 58, 53–68.

    Article  PubMed  CAS  Google Scholar 

  19. DeRidder B.P., Dixon D.P., Beussman D.J., Edwards R., Goldsbrough P.B. 2002. Induction of glutathione Stransferases in Arabidopsis by herbicide safeners. Plant Physiol. 130, 1497–1505.

    Article  PubMed  CAS  Google Scholar 

  20. Yu M., Facchini P.J. 2000. Molecular cloning and characterization of a type III glutathione S-transferase from cell suspension cultures of opium poppy treated with a fungal elicitor. Physiol. Plantarum. 108, 101–109.

    Article  CAS  Google Scholar 

  21. Jones A.M., Thomas V., Truman B., Lilley K., Mansfield J., Grant M. 2004. Specific changes in the Arabidopsis proteome in response to bacterial challenge: Differentiating basal and R-gene mediated resistance. Phytochemistry. 65, 1805–1816.

    Article  PubMed  CAS  Google Scholar 

  22. Bartoli C.G., Simontacchi M., Tambussi E., Beltrano J., Montaldi E., Puntarulo S. 1999. Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J. Exp. Bot. 50, 375–383.

    Article  CAS  Google Scholar 

  23. Kuźniak E., Skłodowska M. 2004. Differential implication of glutathione, glutathione-metabolizing enzymes and ascorbate in tomato resistance to Pseudomonas syringae. J. Phytopathol. 152, 529–536.

    Article  Google Scholar 

  24. Karavangeli M., Labrou N.E., Clonis Y.D., Tsaftaris A. 2005. Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol. Eng. 22, 121–128.

    Article  PubMed  CAS  Google Scholar 

  25. Ryu H.Y., Kim S.Y., Park H.M., You J.Y., Kim B.H., Lee J.S., Nam K.H. 2009. Modulations of AtGSTF10 expression induce stress tolerance and BAK1-mediated cell death. Biochem. Biophys. Res. Commun. 379, 417–422.

    Article  PubMed  CAS  Google Scholar 

  26. Zhao F.Y., Liu W., Zhang S.Y. 2009. Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J. Integr. Plant Biol. 51, 942–950.

    Article  PubMed  CAS  Google Scholar 

  27. George S., Venkataraman G., Parida A. 2010. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J. Plant Physiol. 167, 311–318.

    Article  PubMed  CAS  Google Scholar 

  28. Liu D., Wang G., Wang J., Ge F., Chen C. 2012. Cloning and expression of a glutathione-S-transferase gene from Pyrus pyrifolia Nakai cv Huobali, Acta Bot. Boreal-Occident. Sin. 32, 0029–0034.

    Google Scholar 

  29. Liu D., He X., Li W., Chen C., Ge F. 2012. Molecular cloning of a thaumatin-like protein gene from Pyrus pyrifolia and overexpression of this gene in tobacco increased resistance to pathogenic fungi. Plant Cell Tiss. Organ Cult. 111, 29–39.

    Article  CAS  Google Scholar 

  30. Holsters M., de Waele D., Depicker A., Messens E., van Montagu M., Schell J. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163, 181–187.

    Article  PubMed  CAS  Google Scholar 

  31. Horsch R.B., Fry J.E., Hoffmann N.L., Eichholtz D., Rogers S.G., Fraley R.T. 1985. A simple and general method for transferring genes into plants. Science. 227, 1229–1230.

    Article  CAS  Google Scholar 

  32. Liu D., Zhang X., Tu L., Zhu L., Guo X. 2006. Isolation by suppression-subtractive hybridization of genes preferentially expressed during early and late fiber development stages in cotton. Mol. Biol. 40, 825–834.

    CAS  Google Scholar 

  33. Wang A.G., Luo G.H. 1990. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol. Commun. 26, 55–57.

    Google Scholar 

  34. Veal E.A., Toone W.M., Jones N., Morgan B.A. 2002. Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J. Biol. Chem. 277, 35523–35531.

    Article  PubMed  CAS  Google Scholar 

  35. Jain M., Ghanashyam C., Bhattacharjee A. 2010. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferance genes during development and stress responses. BMC Genomics. 11, 73.

    Article  PubMed  Google Scholar 

  36. Kasuga M., Miura S., Shinozaki K., Yamaguchi-Shinozaki K. 2004. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45, 346–350.

    Article  PubMed  CAS  Google Scholar 

  37. Lim J.D., Hahn S.J., Yu C.Y., Chung I.M. 2005. Expression of the glutathione S-transferase gene (NT107) in transgenic Dianthus superbus. Plant Cell Tiss. Organ Cult. 80, 277–286.

    Article  CAS  Google Scholar 

  38. Dixit P., Mukherjee P.K., Ramachandran V., Eapen S. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PloS ONE. 6, e16360.

  39. Cummins I., Cole D.J., Edwards R. 1997. Purification of multiple glutathione transferases involved in herbicide detoxification from wheat (Triticum aestivum L.) treated with safener fenchlorazole-ethyl. Pestic. Biochem. Physiol. 53, 35–49.

    Article  Google Scholar 

  40. Roxas V.P., Smith R.K.Jr., Allen E.R., Allen R.D. 1997. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnol. 15, 988–991.

    Article  CAS  Google Scholar 

  41. Roxas V.P., Lodhi S.A., Garrett D.K., Mahan J.R., Allen R.D. 2000. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol. 41, 1229–1234.

    Article  PubMed  CAS  Google Scholar 

  42. Kim S.I., Andaya V.C., Tai T.H. 2011. Cold sensitivity in rice (Oryza sativa L.) is strongly correlated with a naturally occurring I99V mutation in the multifunctional glutathione transferase isoenzyme GSTZ2. Biochem. J. 435, 373–380.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Liu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Liu, Y., Rao, J. et al. Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants. Mol Biol 47, 515–523 (2013). https://doi.org/10.1134/S0026893313040109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313040109

Keywords

Navigation