Skip to main content
Log in

Structure of epiphytic bacterial communities of weeds

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Dynamics of the taxonomic structure of epiphytic bacterial communities of the rhizosphere and phyllosphere of seven weed species was studied. The major types of isolated organisms were identified using phenotypic and molecular biological approaches. Dispersion analysis revealed that the ontogenesis stage and plant organ were the factors with the greatest effect on the taxonomic structure of the communities. The dominant microorganisms of weeds were similar to those of cultivated plants. The minor components revealed in the spectra of bacterial communities of weeds belonged to poorly studied genera of chemolithotrophic proteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bergey’s Manual of Systematic Bacteriology, vols. 1–2, Holt, J.G., Ed., Baltimore: Williams and Wilkins, 1986.

  • Bodenhausen, N., Horton, M.W., and Bergelson J., Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana, PLoS One, 2013, vol. 8, no. 2, pp. 1–9.

    Article  Google Scholar 

  • Dobrovol’skaya, T.G., Khusnetdinova, K.A., Manucharova, N.A., and Balabko, P.N., The structure and functions of bacterial communities in an agrocenosis, Euras. Soil Sci., 2016, vol. 49, no. 1, pp. 70–76.

    Article  Google Scholar 

  • Edwards, U., Rogall, T., Bloeker, H., Ende, M.D., and Boeettge, E.C., Isolation and direct complete nucleotide determination of entire genes, characterization of gene coding for 16S ribosomal RNA, Nucl. Acids Res., 1989, vol. 17, pp. 7843–7853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibello, A., Vela, A.I., Martin, M., Bara-Caracciiolo, A., Grenni, P., and Fernangez-Garayzarball, J.F., Reclassification of the members of the genus Tetrathiobacter Ghosh et al. 2005 to the genus Advenella Coenye et al. 2005, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1914–1918.

    Article  CAS  PubMed  Google Scholar 

  • Kremer, R.J., Begonia, M.F.T., Stanley, L., and Lanham, E.T., Characterization of rhizobacteria associated with weed seedlings, Appl. Environ. Microbiol., 1990, vol. 56, pp. 1649–1655.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lysak, L.V., Dobrovol’skaya, T.G., and Skvortsova, I.N., Metody otsenki bakterial’nogo raznoobraziya pochv i identifikatsii pochvennykh bakterii (Methods for Assessment of Soil Bacterial Diversity and Identification of Soil Bacteria), Moscow: MAKS, 2003.

    Google Scholar 

  • Manucharova, N.A., Vlasenko, N.A., Zenova, G.M., Dobrovol’skaya, T.G., and Stepanov, A.L., Methodological aspects of assessing chitin utilization by soil microorganisms, Biol. Bull., 2008, vol. 35, no. 5, pp. 549–554.

    Article  Google Scholar 

  • Marshall, E.J.P. and Moonen, A.C., Field margins in northern Europe: their functions and interactions with agriculture, Agriculture, Ecosystems, Environment, 2003, vol. 89, nos. 1–2, pp. 5–21.

    Google Scholar 

  • Mukhtar, I., Khokhar, I., Mushtag, S., and Ali, A., Diversity of epiphytic and endophytic microorganisms in some dominant weeds, Pak. J. Weed Sci. Res., 2010, vol. 16, pp. 287–297.

    Google Scholar 

  • Sheublin, T.R. and Leveau, J.H.J., Isolation of Arthrobacter species from the phyllosphere and demonstration of their epiphytic fitness, Microbiology Open, 2013, vol. 2, no. 1, pp. 205–213.

    Article  Google Scholar 

  • Sturz, A.V., Matheson, B.G., Arsenault, W., Kimpinski, J., and Christie, B.R., Weeds as a source of plant growth promoting rhizobacteria in agricultural soils, Can. J. Microbiol., 2001, vol. 47, pp. 1013–1024.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J., Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrixchoice, Nucl. Acids Res., 1994, vol. 22, pp. 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabuuchi, E., Kanenko, T., Yano, I., Moss, C.W., and Miyoshi, N., Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb, Int. J. Syst. Bacteriol., 1983, vol. 33, pp. 580–598.

    Article  Google Scholar 

  • Zakharenko, A.V., Teoreticheskie osnovy upravleniya sornym kmoponentom agrpfitotsenoza v sistemakh zemledeliya (Theoretical Basics of Controlling the Weed Component of Agrophytocenoses in Agricultural Systems), Moscow: 2000, MSKhA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Dobrovol’skaya.

Additional information

Original Russian Text © T.G. Dobrovol’skaya, K.A. Khusnetdinova, N.A. Manucharova, A.V. Golovchenko, 2017, published in Mikrobiologiya, 2017, Vol. 86, No. 2, pp. 247–254.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrovol’skaya, T.G., Khusnetdinova, K.A., Manucharova, N.A. et al. Structure of epiphytic bacterial communities of weeds. Microbiology 86, 257–263 (2017). https://doi.org/10.1134/S0026261717020072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717020072

Keywords

Navigation