Skip to main content
Log in

Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Ability to produce dormant forms (DF) was demonstrated for non-spore-forming bacteria Staphylococcus aureus (a nonpathogenic strain) and Corynebacterium pseudodiphtheriticum (an organism of the normal oropharyngeal flora). The salient features of the sthaphylococcal and corynebacterial DF were (1) prolonged (4 months) preservation of viability; (2) resistance to damaging factors (heat treatment); and (3) specific morphology and ultrastructure. The optimal conditions for DF formation were (1) transfer of stationary-phase cultures into saline solution with CaCl2 (10–300 mM) (for S. aureus); (2) growth in SR1 synthetic medium with fivefold nitrogen limitation (for C. pseudodiphtheriticum); and (3) incubation with (1–5) × 10−4 M of C12-AHB, an alkylhydroxybenzene akin to microbial anabiosis autoinducers. Increase of C12-AHB concentration to 7 × 10−4–2 × 10−3 M resulted in “mummification” of cells with irreversible loss of viability without autolytic processes. Germination of dormant forms was followed by increasing of phenotypic variability, as seen from (1) diversity of colony types and (2) emergence of antibiotic-resistant clones on selective media. The share of kanamycin-resistant S. aureus variants was most numerous (0.002–0.01%) in 4-month DF suspensions in SALINE with CaCl2. In the C. pseudodiphtheriticum DF produced under the effect of C12-AHB, the share of kanamycin-resistant variants was also found to increase. These data point to an association between the emergence of antibiotic-resistant variants of bacteria and their persistence in dormant state mediated by starvation stress and regulated by AHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El’-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic functions of extracellular autoregulators of microorganisms, Microbiology (Moscow), 2006, vol. 75, no. 4, pp. 380–389.

    Article  Google Scholar 

  2. Lennon, J.T. and Jones, S.E., Microbial seed banks: the ecological and evolutionary implications of dormancy, Nat. Rev. Microbiol., 2011, vol. 9, no. 2, pp. 119–130.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Y., Persistent and dormant tubercle bacilli and latent tuberculosis, Frontiers Biosci., 2004, vol. 9, pp. 1136–1156.

    Article  CAS  Google Scholar 

  4. Keren, I., Shah, D., Spoering, A., Kaldalu, N., and Lewis, K., Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli, J. Bacteriol., 2004, vol. 186, pp. 8172–8180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lewis, K., Persister cells, Annu. Rev. Microbiol., 2010, vol. 64, pp. 357–372.

    Article  CAS  PubMed  Google Scholar 

  6. Mulyukin, A.L., Lusta, K.A., Gryaznova, M.N., Babusenko, E.S., Kozlova, A.N., Duzha, M.V., Mityushina, L.A., Duda, V.I., and El’-Registan, G.I., Formation of resting cells in microbial suspensions undergoing autolysis, Microbiology (Moscow), 1997, vol. 66, no. 1, pp. 32–38.

    CAS  Google Scholar 

  7. Mulyukin, A.L., Kudykina, Yu.K., Shleeva, M.O., Anuchin, A.M., Suzina, N.E., Danilevich, V.N., Duda, V.I., Kaprelyants, A.S., and El-Registan, G.I., Intraspecies diversity of dormant forms of Mycobacterium smegmatis, Microbiology (Moscow), 2010, vol. 79, no. 4, pp. 461–471.

    Article  CAS  Google Scholar 

  8. Garduño, R.A., Garduño, E., Hiltz M., and Hoffman, P.S., Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms, Infect. Immun., 2002, vol. 70, pp. 6273–6283.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Shleeva, M.O., Kudykina, Y.K., Vostroknutova, G.N., Suzina, N.E., Mulyukin, A.L., and Kaprelyants, A.S., Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification, Tuberculosis, vol. 91, no. 2, pp. 146–154.

  10. Rani, S.A., Pitts, B., Beyenal, H., Veluchamy, R.A., Lewandowski, Z., Davison, W.M., Buckingham-Meyer, K., and Stewart, P.S., Spatial patterns of DNA replication, protein synthesis and oxygen concentration within bacterial biofilms reveal diverse physiological states, J. Bacteriol., 2007, vol. 189, no. 11, pp. 4223–4233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Watson, S.P., Clements, M.O., and Foster, S.J., Characterization of the starvation-survival response of Staphylococcus aureus, J. Bacteriol., 1998, vol. 180, pp. 1750–1758.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Mulyukin, A.L., Kozlova, A.N., and El-Registan, G.I., Properties of the phenotypic variants of Pseudomonas aurantiaca and P. fluorescens, Microbiology (Moscow), 2008, vol. 77, no. 6, pp. 681–690.

    Article  CAS  Google Scholar 

  13. Déziel, E., Comeau, Y., and Villemur, R., Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities, J. Bacteriol., 2001, vol. 183, pp. 1195–1204.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Drenkard, E. and Ausubel, F.M., Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation, Nature, 2002, vol. 416, pp. 740–743.

    Article  CAS  PubMed  Google Scholar 

  15. Chambers, H.F. and DeLeo, F.R., Waves of resistance: Staphylococcus aureus in the antibiotic era, Nat. Rev. Microbiol., 2009, vol. 7, no. 9, pp. 629–641.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Proctor, R.A., von Eiff, C., Kahl, B.C., Becker, K., McNamara, P., Herrmann, M., and Peters, G., Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections, Nat. Rev. Microbiol., 2006, vol. 4, pp. 295–305.

    Article  CAS  PubMed  Google Scholar 

  17. Singh, R., Ray, P., Das A., and Sharma, M., Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study, J. Med. Microbiol., 2009, vol. 58, no. 8, pp. 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  18. Soriano, F., Huelves, L., Naves, P., Rodríguez-Cerrato, V., del Prado, G., Ruiz, V., and Ponte, C., In vitro activity of ciprofloxacin, moxifloxacin, vancomycin and erythromycin against planktonic and biofilm forms of Corynebacterium urealyticum, J. Antimicrob. Chemother., 2009, vol. 63, no. 2, pp. 353–356.

    Article  CAS  PubMed  Google Scholar 

  19. Olender, A., Mechanisms of antibiotic resistance in Corynebacterium spp. causing infections in people, in Antibiotic Resistant Bacteria, A Continuous Challenge in the New Millennium, Pana, M., Ed., 2012. ISBN: 978-053-51-0472-8, InTech

    Google Scholar 

  20. Soriano, F., Zapardiel, J., and Nieto, E., Antimicrobial susceptibilities of Corynebacterium species and other non-spore-forming gram-positive bacilli to 18 antimicrobial agents, Antimicrob. Agents Chemother., 1995, vol. 39, no. 1, pp. 208–214.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sudo, S.Z. and Dworkin, M., Comparative biology of procaryotic resting cells, Adv. Microb. Physiol., 1973, vol. 9, pp. 153–224.

    Article  CAS  PubMed  Google Scholar 

  22. Suzina, N.E., Mulyukin, A.L., Loiko, N.G., Kozlova, A.N., Dmitriev, V.V., Shorokhova, A.P., Gorlenko, V.M., Duda, V.I., and El’-Registan, G.I., Fine structure of mummified cells of microorganisms formed under the influence of a chemical analogue of the anabiosis autoinducer, Microbiology (Moscow), 2001, vol. 70, no. 6, pp. 667–677.

    Article  CAS  Google Scholar 

  23. Non-Culturable Microorganisms in the Environments, Colwell, R.R. and Grimes, D.J., Eds., Washington: ASM Press, 2000.

    Google Scholar 

  24. Oliver, J.D., Recent findings on the viable but nonculturable state in pathogenic bacteria, FEMS Microbiol. Rev., 2010, vol. 34, no. 4, pp. 415–425.

    CAS  PubMed  Google Scholar 

  25. Kaprelyants, A.S. and Kell, D.B., Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation, Appl. Environ. Microbiol., 1993, vol. 59, pp. 3187–3196.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Masmoudi, S., Denis, M., and Maalej, S., Inactivation of the gene katA or sodA affects the transient entry into the viable but non-culturable response of Staphylococcus aureus in natural seawater at low temperature, Mar. Pollut. Bull., 2010, vol. 60, no. 12, pp. 2209–2214.

    Article  CAS  PubMed  Google Scholar 

  27. Hanses, F., Kopp, A., Bala, M., Buechler, C., Falk, W., Salzberger, B., and Schäffler, A., Intracellular survival of Staphylococcus aureus in adipocyte-like differentiated 3T3-L1 cells is glucose dependent and alters cytokine, chemokine, and adipokine secretion, Endocrinology, 2011, vol. 152, no. 11, pp. 4148–4157.

    Article  CAS  PubMed  Google Scholar 

  28. Clement, S., Vaudaux, P., Francois, P., Schrenzel, J., Huggler, E., Kampf, S., Chaponnier, C., Lew, D., and Lacroix, J.S., Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis, J. Infect. Dis., 2005, vol. 192, no. 6, pp. 1023–1028.

    Article  PubMed  Google Scholar 

  29. Linko-Parvinen, A.M., Landberg, R., Tikkanen, M.J., Adlercreutz, H., and Peñalvo, J.L., Alkylresorcinols from whole-grain wheat and rye are transported in human plasma lipoproteins, J. Nutr., 2007, vol. 137, no. 5, pp. 1137–1142.

    CAS  PubMed  Google Scholar 

  30. Ross, A.B., Present status and perspectives on the use of alkylresorcinols as biomarkers of wholegrain wheat and rye intake, J. Nutr. Metab., 2012. doi: 10.1155/2012/462967

    Google Scholar 

  31. Voloshin, S.A. and Kaprelyants, A.S., Cell-cell interactions in bacterial populations, Biochemistry (Moscow), 2004, vol. 69, no. 11, pp. 1268–1275.

    CAS  PubMed  Google Scholar 

  32. Stasiuk, M. and Kozubek, A., Biological activity of phenolic lipids, Cell. Mol. Life Sci., 2010, vol. 67, no. 6, pp. 841–860.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Mulyukin.

Additional information

Original Russian Text © A.L. Mulyukin, N.E. Suzina, V.G. Mel’nikov, V.F. Gal’chenko, G.I. El’-Registan, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 1, pp. 15–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulyukin, A.L., Suzina, N.E., Mel’nikov, V.G. et al. Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum . Microbiology 83, 149–159 (2014). https://doi.org/10.1134/S0026261713060088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713060088

Keywords

Navigation