Skip to main content
Log in

Magnetospirillum aberrantis sp. nov., a new freshwater bacterium with magnetic inclusions

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A new strain of spirilla, SpK, was isolated from the bottom sediments of Ol’khovka River near Kislovodsk (Caucasus). The bacteria (0.4 ±1.5 μm) were motile, with polar flagella. They grew within the temperature range from 20 to 45°C, with the optimum at 31°C. The pH growth optimum was at 6.5–6.9. The main type of metabolism was respiratory, chemoorganotrophic. The organism was microaerophilic, with the growth optimum at 1–5% O2 in the gas phase. Catalase activity was absent, while oxidase activity was detected. Good growth occurred in media with various organic acids, especially acetate and fumarate. Sugars and alcohols were not utilized. Importantly, the strain did not grow on casein hydrolysate and grew well on glycerol. The bacteria contained the RuBisCo cbbm gene (form II). Thiosulfate, ammonium, and ferrous iron were not used as electron donors for autotrophic growth. Unlike sulfate, thiosulfate, ferric iron, or perchlorate, nitrate could be used as an electron acceptor for photoheterotrophic growth. Strain SpK was characterized by the ability to form small, dense intracellular granules (30–40 nm) occurring in clusters or short chains. These inclusions were shown to have magnetic properties. Unlike magnetosomes, the granules did not form long chains. Invaginations of vesicular membranes similar to those found in the known magnetosomeforming microorganisms were observed. The DNA G + C content was 62.6 mol %. Ubiquinone Q 10 was present. The main fatty acids were 18:1ω7 (58.19%), 16:0 (19.23%), 16:1ω7 (11.12%), and 18:0 (1.91%). Polyhydroxybutyrate and polyphosphates were the storage compounds. Analysis of the 16S rRNA gene sequence revealed that the strain belonged to the phylum Alphaproteobacteria, family Rhodospirillaceae, genus Magnetospirillum. Strain SpK formed an isolated cluster on the phylogenetic tree. The similarity between strain SpK and the known Magnetospirillum species was from 96.1 to 96.4%. Thus, the new microorganism was classified as a new species of the genus Magnetospirillum, Magnetospirillum aberrantis sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Faivre, D. and Schuler, D., Magnetotactic Bacteria and Magnetosomes, Chem. Rev., 2008, vol. 108, no. 11, pp. 4875–4898.

    Article  PubMed  CAS  Google Scholar 

  2. Bazylinski, D.A. and Frankel, R.B., Magnetosome Formation in Prokaryotes, Nature Rev. Microbiol., 2004, vol. 2, pp. 217–230.

    Article  CAS  Google Scholar 

  3. Schuler, D., Magnetoreception and Magnetosomes in Bacteria, Microbiol. Monogr., DOI 10.1007/7171-038, 2006, pp. 38–69.

  4. Sakaguchi, T., Arakaki, A., and Matsunaga, T., Desulfovibrio magneticus sp. nov., a Novel Sulfate-Reducing Bacterium That Produces Intracellular Single-Domain-Sized Magnetite Particles, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 215–221.

    PubMed  CAS  Google Scholar 

  5. Spring, S. and Schleifer, K.-H., Diversity of Magnetotactic Bacteria, Syst. Appl. Microbiol., 1995, vol. 18, pp. 147–153.

    Google Scholar 

  6. Safarik I. and Safariková M., Magnetic Nanoparticles and Biosciences, Monatshefte fur Chemie, 2002, vol. 133, no. 6, pp. 737–759.

    Article  CAS  Google Scholar 

  7. Torres, De. Araujo, F.F., Pires, M.A., Frankel, R.B., and Bicudo, C.E., Magnetite and Magnetotaxis in Algae, Biophys. J. Biophys. Soc., 1986, vol. 50, pp. 375–378.

    Google Scholar 

  8. Spring, S., Lins, U., Amann, R., Schleifer, K.-H., Ferreira, L.C.S., Esquivel, D.M.S., and Farina, M., Phylogenetic Affiliation and Ultrastructure of Uncultured Magnetic Bacteria with Unusually Large Magnetosomes, Arch. Microbiol., 1998, vol. 169, pp. 136–147.

    Article  PubMed  CAS  Google Scholar 

  9. Garrity, G.M. and Holt, J.G., The Road Map to the Manual, in Bergey’s Manual of Systematic Bacteriology, 2nd Ed., Boone, D.R. et al., Eds., New York: Springer, 2001, vol. 1, pp. 155–166.

    Google Scholar 

  10. Geelhoed, J.S., Kleerebezem, R., Sorokin, D.Y., Stams, A.J.M., and van Loosdrecht, M.C.M., Reduced Inorganic Sulfur Oxidation Supports Autotrophic and Mixotrophic Growth of Magnetospirillum Strain J10 and Magnetospirillum gryphiswaldense, Environ. Microbiol., 2010, vol. 12, no. 4, pp. 1031–1040.

    Article  PubMed  CAS  Google Scholar 

  11. Thrash, J.C., Ahmadi, S., Torok, T., and Coates, J.D., Magnetospirillum bellicus sp. nov., a Novel Dissimilatory Perchlorate-Reducing Alphaproteobacterium Isolated from a Bioelectrical Reactor, Appl. Environ. Microbiol., 2010, vol. 76, no. 14, pp. 4730–4737.

    Article  PubMed  CAS  Google Scholar 

  12. Maratea, D. and Blakemore, R.P., Aquaspirillum magnetotacticum sp. nov., a Magnetic Spirillum, Int. J. Syst. Bacteriol., 1981, vol. 31, no. 4, pp. 452–455.

    Article  Google Scholar 

  13. Pfennig, N. and Lippert, K.D., Über das Vitamin B12-bedurfnis phototropher Schwefel Bakterien, Arch. Microbiol., 1966, vol. 127, pp. 125–135.

    Google Scholar 

  14. Wolfe, R.S., Thauer, R.K., and Pfennig, N.A., A Capillary Racetrack Method for Isolation of Magnetotactic Bacteria, FEMS Microbiol. Ecol., 1987, vol. 45, no. 1, pp. 31–35.

    Article  Google Scholar 

  15. Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, I.Yu., Metody analiza prirodnykh vod (Methods for Ananlysis of Natural Waters), Moscow: Nedra, 1970.

    Google Scholar 

  16. Bryantseva, I.A., Gorlenko, V.M., Kompantseva, E.I., Imhoff, J.F., Suling, J., and Mityushina, L., Thiorodospira sibirica gen. nov., sp. nov., a New Alkaliphilic Purple Sulfur Bacterium from a Siberian Soda Lake, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 697–703.

    Article  PubMed  Google Scholar 

  17. Bryantseva, I.A., Gorlenko, V.M., Kompantseva, E.I., Kuznetsov, B.B., and Osipov, G.A., Alkaliphilic Heliobacterium Heliorestis baculata sp. nov. and Emended Description of the Genus Heliorestis, Arch. Microbiol., 2000, vol. 174, pp. 283–291.

    Article  PubMed  CAS  Google Scholar 

  18. Collins, M.D., Analysis of Isoprenoid Quinones, Meth. Microbiol., 1985, vol. 18, pp. 329–363.

    Article  CAS  Google Scholar 

  19. Marmur, J., A Procedure for the Isolation of Deoxyribonucleic Acid from Microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 208–218.

    Article  CAS  Google Scholar 

  20. Owen, R.J., Hill, L.R., and Lapage, S.P., Determination of DNA Base Composition from Melting Profiles in Dilute Buffers, Biopolymers, 1969, vol. 7, pp. 503–516.

    Article  PubMed  CAS  Google Scholar 

  21. Boulygina, E.S., Kuznetsov, B.B., Marusina, A.I., Kravchenko, I.K., Bykova, S.A., Kolganova, T.V., and Gal’chenko, V.F., A Study of Nucleotide Sequences of nifH Genes of Some Methanotrophic Bacteria, Mikrobiologiya, 2002, vol. 71, no. 4, pp. 500–508 [Microbiology (Engl. Transl.), vol 71, no. 4, pp. 425–432].

    Google Scholar 

  22. Lane, D.J., 16S/23S Sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., Chichester: Wiley, 1991, pp. 115–175.

    Google Scholar 

  23. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Positions-Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  24. Van de Peer, Y. and De Wachter, R., TREECON for Windows: a Software Package for the Construction and Drawing of Evolutionary Trees for the Microsoft Windows Environment, Comput. Applic. Biosci., 1994, vol. 10, no. 5, pp. 569–570.

    Google Scholar 

  25. Popa, R., Fang, W., Nealson, K.H., Souza-Egipsy, V., Berquó, T.S., Banerjee, S.K., and Penn, L.R., Effect of Oxidative Stress on the Growth of Magnetic Particles in Magnetospirillum magneticum, Int. Microbiol., 2009, vol. 12, pp. 49–57.

    CAS  Google Scholar 

  26. Bergey’s Manual of Systematic Bacteriology, 8th ed., vol.1–2, Holt, J.G., Ed, Baltimore-London: Williams and Wilkins, 1986 [Russ. Transl. Moscow: Mir, 1997].

    Google Scholar 

  27. Ullrich, S., Kube, M., Schubbe, S., Reinhardt, R., and Schuler, D., A Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements During Stationary Growth, J. Bacteriol., 2005, pp. 7176–7184.

  28. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: a Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Kuznetsov.

Additional information

Original Russian Text © V.M. Gorlenko, M.V. Dzyuba, A.N. Maleeva, A.N. Panteleeva, T.V. Kolganova, B.B. Kuznetsov, 2011, published in Mikrobiologiya, 2011, Vol. 80, No. 5, pp. 679–690.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorlenko, V.M., Dzyuba, M.V., Maleeva, A.N. et al. Magnetospirillum aberrantis sp. nov., a new freshwater bacterium with magnetic inclusions. Microbiology 80, 692–702 (2011). https://doi.org/10.1134/S0026261711050055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261711050055

Keywords

Navigation