Skip to main content
Log in

Method for rapid DNA extraction from bacterial communities of different soils

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A method for indirect DNA extraction from various soils significantly differing in their physicochemical properties has been developed. The proposed method is based on cell desorption from soil particles using a Tris-EDTA (TE) buffer supplemented with polyvinylpolypyrrolydone (PVPP) and sodium dodecylsulfate (SDS). Methods for subsequent cell lysis and purification of DNA preparations based on alkaline lysis followed by chromatography on ion-exchange resins were described by us earlier. The purity of the DNA preparations obtained did not depend on the type of soil. It was shown that the DNA preparations can be used for the amplification of rather large fragments, e.g., sequences spanning the complete 16S rRNA gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hugenholtz, P., Goebel, B.M., and Pace, N.R., Impact of Culture-Independent Studies on the Phylogenetic View of Bacterial Diversity, J. Bacteriol., 1998, vol. 180, pp. 4765–4774.

    CAS  PubMed  Google Scholar 

  2. Bakken, L.R., Separation and Purification of Bacteria from Soil, Appl. Environ. Microbiol., 1985, vol. 49, pp. 1482–1487.

    PubMed  Google Scholar 

  3. Engelen, B.K., Meinken, K., von Wintzingerode, F., Heurer, H., Malkomes, H.-P., and Backhaus, H., Monitoring Impact of Pesticide Treatment on Bacterial Soil Communities by Metabolic and Genetic Fingerprinting in Addition to Conventional Testing Procedures, Appl. Environ. Microbiol, 1998, vol. 64, pp. 2814–2821.

    CAS  PubMed  Google Scholar 

  4. Smit, E., Leeflang, P., and Wernars, K., Detection of Shifts in Microbial Community Structure and Diversity in Soil Caused by Cooper Contamination Using Amplified Ribosomal DNA Restriction Analysis, FEMS Microbiol Ecol, 1997, vol. 23, pp. 249–261.

    CAS  Google Scholar 

  5. Lee, S.-Y., Boillinger, J., Bezdicek, D., and Ogram, A., Estimation of the Abundance of An Uncultured Soil Bacterial Strains by a Competitive Quantitative PCR Method, Appl. Environ. Microbiol., 1996, vol. 62, pp. 3787–3793.

    CAS  PubMed  Google Scholar 

  6. Liesack, W. and Stackebrandt, E., Occurrence of Novel Groups of the Domain Bacteria As Revealed by Analysis of Genetic Material Isolated from An Australian Terrestrial Environment, J. Bacteriol., 1992, vol. 174, pp. 5072–5078.

    CAS  PubMed  Google Scholar 

  7. Ka, J., Holben, W.E., and Tiedje, J.M., Analysis of Competition in Soil Among 2,4-Dichlorophenoxyacetic Acid-Degrading Bacteria, Appl. Environ. Microbiol., 1994, vol. 60, pp. 1121–1128.

    CAS  PubMed  Google Scholar 

  8. Stapleton, R.D., Ripp, S., Jimenez, L., Cheol-Koh, S., Fleming, J.T., Gregory, I.R., and Sayler, G.S., Nucleic Acid Analytical Approaches in Bioremediation: Site Assessment and Characteriztion, J. Microbiol. Methods, 1998, vol. 32, pp. 165–178.

    Article  CAS  Google Scholar 

  9. Giddings, G., The Release of Genetically Engineered Microorganisms and Viruses Into the Environment, New Phytol., 1998, vol. 140, pp. 173–184.

    Article  Google Scholar 

  10. Prosser, J., Molecular Marker Systems for Detection of Genetically Engineered Microorganisms in the Environment, Microbiology, 1994, vol. 140, pp. 5–17.

    CAS  PubMed  Google Scholar 

  11. Zhou, J., Bruns, M.A., and Tiede, J.M., DNA Recovery from Soils for Diverse Composition, Appl. Environ. Microbiol., 1996, vol. 62, pp. 316–322.

    CAS  PubMed  Google Scholar 

  12. van Elsas, J.D., Duarte, G.F., Rosado, A.S., and Smalla, K., Microbiological and Molecular Biological Methods for Monitoring Microbial Inoculants and Their Effects in the Soil Environment, J. Microbiol. Methods, 1998, vol. 32, pp. 133–154.

    Google Scholar 

  13. Torsvik, V., Goksoyr, J., and Daae, L.F., High Diversity in DNA of Soil Bacteria, Appl. Environ. Microbiol., 1990, vol. 56, pp. 782–787.

    CAS  PubMed  Google Scholar 

  14. Hopkins, D.W., MacNaughton, S.J., O’Donnell, A.G., A Dispersion and Differential Centrifugation Technique for Representatively Sampling Microorganisms from Soil, Soil Biol. Biochem., 1991, vol. 23, pp. 217–225.

    Google Scholar 

  15. Frostergard, A., Courtois, S., Ramisse, V., Clerc, S., and Bernillon, D., Le Gall, F., Jeannin, P., Nesme, X., and Simonet, P., Quantification of Bias Related to the Extraction of DNA Directly from Soils, Appl. Environ. Microbiol., 1999, vol. 65, pp. 5409–5420.

    Google Scholar 

  16. Tebbe, C.C. and Vahjen, W., Interference of Humic Acid and DNA Extraction Directly from Soil in Detection and Transformation of Recombinant DNA from Bacteria and Yeast, Appl. Environ. Microbiol., 1993, vol. 59, pp. 2657–2665.

    CAS  PubMed  Google Scholar 

  17. Prieme, A., Sitaula, J.I.B., Klemedtsson, A.K., and Bakken, L.R., Extraction of Methane-Oxidizing Bacteria from Soil Particles, FEMS Microbiol. Ecol., 1996, vol. 21, pp. 59–68.

    CAS  Google Scholar 

  18. Leff, L., Dana, J.R., McArthur, J.V., and Shimkets, L.J., Comparison of Methods of DNA Extraction from Stream Sediments, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1141–1143.

    CAS  PubMed  Google Scholar 

  19. Krsek, M. and Wellington, E.M.H., Comparison of Different Methods for the Isolation and Purification of Total Community DNA from Soil, J. Microbiol. Methods, 1999, vol. 39, pp. 1–16.

    Article  CAS  PubMed  Google Scholar 

  20. Smalla, K., Creswell, N., Mendoca-Hagler, L.C., Wolters, A., and van Elsas, J.D., Rapid DNA Extraction Protocol from Soil for Polymerase Chain Reaction-Mediated Amplification, J. Appl. Bacteriol., 1993, vol. 74, pp. 78–85.

    CAS  Google Scholar 

  21. Young, C.C., Burghoff, R.L., Keim, L.G., Minak-Bernero, V., Lute, J.R., and Hinton, S.M., Polyvinylpyrrolidone-Agarose Gel Electrophoresis Purification of Polymerase Chain Reaction-Amplifiable DNA from Soil, Appl. Environ. Microbiol., 1993, vol. 50, pp. 1972–1974.

    Google Scholar 

  22. Boulygina, E.S., Kuznetsov, B.B., Marusina, A.I., Tourova, T.P., Kravchenko, I.K., Bykova, S.A., Kolganova, T.V., and Gal’chenko, V.F., Studies of Nucleotide Sequences of nifH Genes in Methanotrophic Bacteria, Mikrobiologiya, 2002, vol. 71, pp. 500–508.

    Google Scholar 

  23. Lane, D.J., in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., Chichester: Wiley, 1991, pp. 115–177.

    Google Scholar 

  24. Hales, B.A., Edwards, C., Ritchie, D.A., Hall, G., Pickup, R.W., and Saunders, J.R., Isolation and Identification of Methanogen-Specific DNA from Blanket Bog Peat by PCR Amplification and Sequence Analysis, Appl. Environ. Microbiol., 1996, vol. 62, pp. 668–675.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Boulygina.

Additional information

Original Russian Text © E.V. Zaporozhenko, N.V. Slobodova, E.S. Boulygina, I. K. Kravchenko, B.B. Kuznetsov, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 1, pp. 127–134.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaporozhenko, E.V., Slobodova, N.V., Boulygina, E.S. et al. Method for rapid DNA extraction from bacterial communities of different soils. Microbiology 75, 105–111 (2006). https://doi.org/10.1134/S0026261706010188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261706010188

Key words

Navigation