Skip to main content
Log in

Glauconite Deposits in Russia: Geological Position, Formation Conditions, and Development Perspectives

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The article is devoted to analysis of the glauconite resource base in Russia. The geotectonic and lithological-paleogeographic positions of deposits and large glauconite occurrences, and their formation conditions are considered. Based on the structural position, age, and spatial localization of deposits and occurrences, glauconite provinces are identified and the most promising areas for expanding the glauconite resource base in the Russian Federation are identified. Information on reserves in deposits, the degree of their development, and production volumes is given. An overview of the main producer countries and glauconite production volumes in the world is presented. The geological structure and quality of raw materials in the Karinsk glauconite deposit are described. In tectonic terms, the glauconite deposits and occurrences in Russia are confined to the central parts of plates and platforms, foredeeps, and orogenic belts. The majority of glauconite deposits and occurrences are found in the Upper Cretaceous and Paleogene (Late Jurassic or Early Cretaceous in some cases) rocks. Predicted glauconite resources in the Russian Federation are more than 2.5 Gt. The most promising sites include the areas of western Siberia, as well as Moscow and Kirov districts in the European part of Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Categories of reserves: А—explored in detail; В—tentatively explored; С1—weakly explored; С2—tentatively estimated (cateogories A, B, and С1 correspond roughly to “proven reserves” in the American classification; category С2, to “probable reserves.”

REFERENCES

  1. Atlas litologo-paleogeograficheskikh kart SSSR (Atlas of Lithological–Paleogeographic Maps of the Soviet Union), Vinogradov, A.P., Ed., Moscow: Vses. Aerogeol. Trest Minist. Geol. SSSR, 1968.

    Google Scholar 

  2. Banerjee, S., Chattoraj, S.L., Saraswati, P.K., Dasgupta, S., Sarkar, U., and Bumby, A., The origin and maturation of lagoonal glauconites: a case study from the Oligocene Maniyara Fort Formation, western Kutch, India, Geological J., 2012, vol. 47, pp. 357–371.

    Article  Google Scholar 

  3. Banerjee, S., Bansal, U., Pande, K., and Meena, S.S., Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: implications for evaluation of stratigraphic condensation, Sediment. Geol., 2016, no. 331, pp. 12–29.

  4. Banerjee, S., Choudhury, T.R., Saraswati, P.K., and Khanolkar, S., The formation of authigenic deposits during Paleogene warm climatic intervals: a review, J. Palaeogeogr., 2020, vol. 9, pp. 1–27. https://doi.org/10.1186/s42501-020-00076-8

    Article  Google Scholar 

  5. Belous, N.Kh., Nikolaeva, I.V., Kazanskii, Yu.P., Babin, A.A., Klyarovskii, V.M., Berdnikov, A.P., Yushin, I., Nagorskii, M.P., D’yakonova, N.D., and Vdovin, V.V., Zapadno-Sibirskii zhelezorudnyi bassein (The West Siberian Iron Ore Basin), Novosibirsk: SO RAN SSSR, 1964.

  6. Belousov, P. and Semenkova, A., Egorova, T, Romanchuk, A., Zakusin S., Dorzhieva O., Tyupina, E., Izosimova, Y., Tolpeshta, I., Chernov, M., and Krupskaya, V., Cesium sorption and desorption on glauconite, bentonite, zeolite and diatomite, Minerals, 2019, vol. 9, p. 625.

    Article  Google Scholar 

  7. Castro, L. and Tourn, S., Direct application of phosphate rocks and glauconite as alternative sources of fertilizer in Argentina, Explor. Min. Geol., 2013, vol. 12, pp. 71–78.

    Article  Google Scholar 

  8. Deb, S.P. and Fukuoka, M., Fe-illites in a Proterozoic deep marine slope deposit in the Penganga Group of the Pranhita Godavari Valley: their origin and environmental significance, J. Geol., 1998, vol. 106, pp. 741–750.

    Article  Google Scholar 

  9. Distanov, U.G., Mikhailov, A.S., and Konyukhova, T.P., Prirodnye sorbenty SSSR (Natural Sorbents in the Soviet Union), Moscow: Nedra, 1990.

  10. Drits, V.A. and Kossovskaya, A.G., Glinistye mineraly: slyudy, khlority (Clay Minerals: Micas and Chlorites), Moscow: Nauka, 1991.

  11. El Albani, A., Meunier, A., and Fursich, F., Unusual occurrence of glauconite in a shallow lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France), Terra Nova, 2005, vol. 17, pp. 537–544.

    Article  Google Scholar 

  12. Franus, M. and Bandura, L., Sorption of heavy metal ions from aqueous solution by glauconite, Fresen. Envir. Bull., 2014, vol. 23, pp. 825–839.

    Google Scholar 

  13. Franzosi, C., Castro, L., and Celeda, A., Technical evaluation of glauconies as alternative potassium fertilizer from the Salamanca Formation, Patagonia, Southwest Argentina, Nat. Resour. Res., 2014, vol. 23, pp. 311–320.

    Article  Google Scholar 

  14. Geptner, A.R., Ivanovskaya, T.A., Pokrovskaya, E.V., and Kuralenko, N.P., Glauconite from Paleogene volcano-terrigenous rocks in western Kamchatka, Lithol. Miner. Resour., 2008, no. 3, pp. 228–249.

  15. Gorokhov, I.M., Yakovleva, O.V., Semikhatov, M.A., and Ivanovskaya, T.A., Rb–Sr and K–Ar ages and Mössbauer spectra of globular phyllosilicates of the glauconite series: The Middle Riphean Debengda Formation of the Olenek Uplift, northern Siberia, Lithol. Miner. Resour., 1995, no. 6, pp. 556–570.

  16. Heckman, J.R. and Tedrow, J.C.F., Green sand as a soil amendment, Better Crops, 2004, vol. 88, pp. 1–17.

    Google Scholar 

  17. Ivanovskaya, T.A., Zvyagina, B.B., Sakharov, B.A., Zaitseva, T.S., Pokrovskaya, E.V., and Dorzhieva, O.V., Globular layer silicates of the glauconite–illite composition in Upper Proterozoic and Lower Cambrian rocks, Lithol. Miner. Resour., 2015, no. 6, pp. 452–477.

  18. Karataev, O.V., Preobrazhenskii, A.B., and Yartseva, I.N., Collection of summary materials concerning the reserves of widespread mineral resources in the Russian Federation, in Glaukonity (Glauconites), Moscow, 2019, no. 4.

  19. Karimi, E., Abdolzadeh, A., Sadeghipour, H.R., and Aminei, A., The potential of glauconitic sandstone as a potassium fertilizer for olive plants, Arch. Agron. Soil Sci., 2012, vol. 58, pp. 983–993. https://doi.org/10.1080/03650340.2011.557369

    Article  Google Scholar 

  20. Knyazev, Yu.G., Gosudarstvennaya Geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 100 000 (State Geological Map of the Russian Federation. Scale: 1 : 1 000 000, St. Petersburg, 2011.

  21. Levchenko, E.N. and Tigunov, L.P., Glauconites in Russia: State and perspectives of the development of raw mineral base, Mineral’noe syr’e. Seriya geologo-ekonomicheskaya (Raw Minerals: Ser. Geol.-Miner.), Moscow: VIMS, 2011, no. 32.

  22. Levchenko, M.L., State of resource base and possibilities of the utilization of glauconites in Russia, Ekonom. Upravl., 2008, vol. 2, pp. 27–31.

    Google Scholar 

  23. Lopez-Quiros, A., Escutia, C., Sanchez-Navas, A., et al., Glaucony authigenesis, maturity and alteration in the Weddell Sea: An indicator of paleoenvironmental conditions before the onset of Antarctic glaciation, Sci. Rep., 2019, vol. 9, pp. 1–12. https://doi.org/10.1038/s41598-019-50107-1

    Article  Google Scholar 

  24. Lopez-Quiros, A., Sanchez-Navas, A., Nieto, F., and Escutia, C., New insights into the nature of glauconite, Am. Mineral., 2020, vol. 105, pp. 674–686. https://doi.org/10.2138/am-2020-7341

    Article  Google Scholar 

  25. Mank, V.V. and Melnyk, L.N., Use of clay minerals for adsorptive clearing of aqueous-alcoholic solutions, Acta Geodyn. Geomater., 2005, vol. 2, pp. 113–117.

    Google Scholar 

  26. Manning, D., Mineral sources of potassium for plant nutrition. A review, Agron. Sustain. Develop., 2010, vol. 30, p. 1016. https://doi.org/10.1016/j.sedgeo.2017.04.006

    Article  Google Scholar 

  27. Memedi, H., Atkovska, K., Lisichkov, K., Marinkovski, M., Kuvendziev, S., Bozinovski, Z., and Reka, A.A., Removal of Cr(VI) from water resources by using different raw inorganic sorbents, Qual. Life, 2016, vol. 7, pp. 77–85.

    Google Scholar 

  28. Merenkov, A.M., Poleznye iskopaemye Sakhalinskoi oblasti (Useful Minerals in the Sakhalin District, Southern Sakhalinsk), Sakhal. Knizhn. Izd-vo, 2002.

  29. Meunier, A. and El Albani, A., The glauconite – Fe-illite – Fe-smectite problem: a critical review, Terra Nova, 2007, vol. 19, pp. 95–104.

    Article  Google Scholar 

  30. Morton, A.C., Merriman, R.J., and Mitchell, J.G., Genesis and significance of glauconitic sediments of the Southwest Rockall Plateau, Init. Rep. Deep Sea Drill. Proj., 1984, vol. 81, pp. 645–652.

    Google Scholar 

  31. Nikolaeva, I.V., Mineraly gruppy glaukonita v osadochnykh formatsiyakh (Glauconite Group Minerals in Sedimentary Formations), Novosibirsk: Nauka, 1977.

  32. Nikolaeva, I.V., Mineralogiya i geokhimiya glaukonita (Mineralogy and Geochemistry of Glauconite), Novosibirsk: SO RAN SSSR, 1981.

  33. Novikov, I.M., Otchet o rezul’tatakh otsenochnykh i razvedochnykh rabot na uchastke I ocheredi Karinskogo mestorozhdeniya glaukonitovykh peskov v Kunashakskom raione Chelyabinskoi oblasti, provedennykh OOO “Glaukonit” v 1998–2003 gg., s podschetom zapasov po sostoyaniyu na 01.01.2004 g. (Results of the Appraisal and Exploration in the First Priority Sector of the Kara Glauconite Sand Deposit (Kunashak Area, Chelyabinsk District) Carried out by Glaukonit LLC in 1998–2003 with the Calculation of Reserves:Report as of January 1, 2004), Chelyabinsk, 2004.

  34. Odin, G.S. and Fullagar, P.D., Geological significance of the glaucony facies (Green Marine Clays), Developm. Sediment., 1988, vol. 45, pp. 295–332.

    Article  Google Scholar 

  35. Odin, G.S. and Matter, A., De glauconiarum origine, Sedimentology, 1981, vol. 28, pp. 611–641.

    Article  Google Scholar 

  36. Petrov, O.V., Geologicheskaya karta Rossii i prilegayushchikh akvatorii, masshtab 1 : 2 500 000 (Geological Map of Russia and Adjacent Water Areas, Scale 1 : 2 500 000), St. Petersburg: VSEGEI, 2011.

  37. Porrenga, D.H., Glauconite and chamosite as depth indicators in the marine environment, Mar. Geol., 1967, vol. 5, pp. 495–501.

    Article  Google Scholar 

  38. Rudmin, M.A., Mazurov, A.K., Makarov, B.I., Galikhanov, A.V., Stebletsov, M.D., and Chepala, K.K., On possibility of using glauconite from rocks of Bakchar deposit (western Siberia) in agriculture, Bull. Tomsk Polytech. Univ., Geo Assets Engin., 2016, vol. 327, pp. 6–16.

    Google Scholar 

  39. Rudmin, M., Banerjee, S., Mazurov, A., Makarov, B., and Martemyanov, D., Economic potential of glauconitic rocks in Bakchar deposit (S-E Western Siberia) for alternate potash fertilizer, Appl. Clay Sci., 2017, vol. 150, pp. 225–233. https://doi.org/10.1016/j.clay.2017.09.035

    Article  Google Scholar 

  40. Rudmin, M.A., Mazurov, A.K., Reva, I.V., and Stebletsov, M.D., Perspectives of rhe complex development of the Bakchar iron ore deposit, western Siberia, Russia, Izv. Tomsk. Politekhn. Univ., Inzhin. Georesur., 2018, no. 329, pp. 85–94.

  41. Rudmin, M., Reva, I., Sokol, E., Abdullayev, E., Ruban, A., Kudryavtsev, A., Tolkachev, O., and Mazurov, A., Minerals of rare earth elements in high-phosphorus ooidal ironstones of the western siberia and Turgai Depression, Minerals, 2019, vol. 10, no. (1), pp. 1–11.

  42. Semenkova, A., Belousov, P., Rzhevskaia, A., Izosimova, Yu., Maslakov, K., Tolpeshta, I., Romanchuk, A., and Krupskaya, V., U(VI) sorption onto natural sorbents, J. Radioanal. Nucl. Chem., 2020, vol. 326, no. (1), pp. 293–301.

  43. Simakova, Yu.S., Lyutoeva, V.P., and Lysyuk, A.Yu., Crystal chemical features of glauconite in the Kara deposit, Vest. Komi NTs URO RAN, 2019, no. 3, pp. 41–49. https://doi.org/10.19110/2221-2221-1381-2019-03-41-50

  44. Singla, R., Alex, T.C., and Kumar, R., On mechanical activation of glauconite: Physicochemical changes, alterations in cation exchange capacity and mechanisms, Powder Technol., 2020, vol. 360, pp. 337–351. https://doi.org/10.1016/j.powtec.2019.10.035

    Article  Google Scholar 

  45. Veloso, C., Verde Agritech announces $1.358 Million revenue in 2018. Belo Horizonte, Brazil. 2019. https://finance.yahoo.com/news/verde-agritech-announces-1-358-220000954.html.

  46. Verma, J.P., Does glauconite be an emerging and potential source of potash fertilizer?, Recent Adv. Petrochem. Sci., 2018, vol. 4, pp. 5–8. https://doi.org/10.19080/RAPSCI.2018.04.555649

    Article  Google Scholar 

  47. Vigdorovich, V.I., Tsygankova, L.E., Esina, M.N., Uryadnikov, A.A., and Shel, N.V., Calculation of the dynamic sorbent capacity in the presence of two sorbates, J. Water Process Engin., 2017, vol. 20, pp. 180–186. http://verdepotash.com/investors/pfs_highlights. https://doi.org/10.1016/J.JWPE.2017.11.002

    Article  Google Scholar 

  48. Zaitseva, T.S., Gorokhov, I.M., Ivanovskaya, T.A., Semikhatov, M.A., Kuznetsov, A.B., Mel’nikov, N.N., Arakelyants, M.M., and Yakovleva, O.V., Mössbauer characteristics, mineralogy and isotopic age (Rb–Sr, K–Ar) of Upper Riphean glauconites from the Uk Formation, the Southern Urals, Stratigr. Geol. Correl., 2008, no. 3, pp. 227–247.

  49. Zaitseva, T.S., Semikhatov, M.A., Gorokhov, I.M., Sergeev, V.N., Kuznetsov, A.B., Ivanovskaya, T.A., Mel’nikov, N.N., and Konstantinova, G.V., Isotopic Geochronology and Biostratigraphy of Riphean Deposits of the Anabar Massif, North Siberia, Stratigr. Geol. Correl., 2016, no. 6, pp. 549–576.

Download references

ACKNOWLEDGMENTS

The authors thank I.M. Novikov (Director, LLC “Geokompleks”) and V.A. Edapin (Director LLC “Glaukonit”) for placing the geological materials at our disposal, as well as to workers at Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences—S.V. Zakusin (X-ray phase analysis), A.I. Yakushev (X-ray fluorescence analysis), and N.D. Karelina (technical help in the manuscript preparation). We are also thankful to I.V. Vikentyev, DSc (Geol.–Miner.) (Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Moscow) and T.S. Zaitsev, PhD (Geol.–Miner.) (Institute of Precambrian Geology and Geochronology, St. Petersburg) for useful comments that were instrumental in refining this manuscript.

Funding

Analysis of the glauconite raw material base in Russia was supported by the Russian Science Foundation, project no. 18-77-00015. Study of the Karinsk deposit was accomplished under the Basic Program of Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Belousov.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousov, P.E., Chupalenkov, N.M., Rudmin, M.A. et al. Glauconite Deposits in Russia: Geological Position, Formation Conditions, and Development Perspectives. Lithol Miner Resour 57, 234–247 (2022). https://doi.org/10.1134/S002449022202002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002449022202002X

Keywords:

Navigation