Skip to main content
Log in

Experimental Studies and Simulation of Methane Pyrolysis and Oxidation in Reflected Shock Waves Accompanied by Soot Formation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

An experimental and computational study of methane pyrolysis and oxidation and formation of soot particles in reflected shock waves has been performed using a previously proposed unified kinetic model. The model makes it possible to describe the consumption of initial methane molecules and formation of products during pyrolysis and oxidation of various methane–oxygen–argon mixtures. The results of experiments in shock tubes of various designs, equipped with different means of detection of the initial components and secondary products, were compared with the predictions of kinetic simulations. In general, the kinetic model demonstrated good predictive power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Abanades, S., Kimura, H., and Otsuka, H., Fuel Process. Technol., 2014, vol. 122, p. 153.

    Article  CAS  Google Scholar 

  2. Rodat, S. and Abanades, S., Front. Energy Res., 2020, vol. 8, p. 206.

  3. Caliot, C., Flamant, G., Patrianakos, G., Kostoglou, M., and Konstandopoulos, A.G., AIChE J., 2012, vol. 58, p. 2545.

    Article  CAS  Google Scholar 

  4. Rodat, S., Abanades, S., and Flamant, G., Int. J. Chem. React. Eng., 2010, vol. 8, p. 1.

    Google Scholar 

  5. Flamant, G., J. Solar Energy Eng., 2011, vol. 133, p. 0310011.

    Article  Google Scholar 

  6. Dors, M., Nowakowska, H., Jasin’ski, M., and Mizeraczyk, J., Plasma Chem. Plasma Process., 2014, vol. 34, p. 313.

    Article  CAS  Google Scholar 

  7. Agafonov, G.L., Vlasov, P.A., Zhil’tsova, I.V., Smirnov, V.N., Tereza, A.M., Bilera, I.V., and Kolbanovskii, Yu.A., Kinet. Catal., 2016, vol. 57, no. 5, p. 557.

    Article  CAS  Google Scholar 

  8. Stupochenko, E.V., Losev, S.A., and Osipov, A.I., Relaksatsionnye protsessy v udarnykh volnakh (Relaxation Processes in Shock Waves), Moscow: Nauka, 1965.

    Google Scholar 

  9. Agafonov, G.L., Vlasov, P.A., and Smirnov, V.N., Kinet. Catal., 2011, vol. 52, no. 3, p. 358.

    Article  CAS  Google Scholar 

  10. Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Kolbanovskii, Yu.A., Smirnov, V.N., and Tereza, A.M., Kinet. Catal., 2015, vol. 56, no. 1, p. 12.

    Article  CAS  Google Scholar 

  11. Haynes, B.S. and Wagner, H.G., Prog. Energy Combust. Sci., 1981, vol. 7, no. 4, p. 229.

    Article  CAS  Google Scholar 

  12. Nativel, D., Shu, B., Herzler, J., Fikri, M., and Schulz, C., Proc. Combust. Inst., 2019, vol. 37, p., 197.

  13. Sela, P., Shu, B., Aghsaee, M., Herzler, J., Welz, O., Fikri, M., and Schulz, C., Rev. Sci. Instrum., 2016, vol. 87, p. 105103.

    Article  CAS  Google Scholar 

  14. Cancino, L.R., Fikri, M., Oliveira, A.A.M., and Schulz, C., Energy Fuels, 2010, vol. 24, p. 2830.

    Article  CAS  Google Scholar 

  15. Fikri, M., Makeich, A., Rollmann, G., Schulz, C., and Entel, P., J. Phys. Chem. A, 2008, vol. 112, p. 6330.

    Article  CAS  Google Scholar 

  16. Hidaka, Y., Sato, K., Henmi, Y., Tanaka, H., and Inami, K., Combust. Flame, 1999, vol. 118, p. 340.

    Article  CAS  Google Scholar 

  17. Hidaka, Y., Hattori, K., Okuno, T., Inami, K., Abe, T., and Koike, T., Combust. Flame, 1996, vol. 107, p. 401.

    Article  CAS  Google Scholar 

  18. Hidaka, Y., Shiba, S., Takuma, H., and Suga, M., Int. J. Chem. Kinet., 1985, vol. 17, p. 441.

    Article  CAS  Google Scholar 

  19. Hidaka, Y., Nakamura, T., Miyauchi, A., Shiraishi, T., and Kawano, H., Int. J. Chem. Kinet., 1989, vol. 21, p. 643.

    Article  CAS  Google Scholar 

  20. Hidaka, Y., Kimura, K., Hattori, K., and Okuno, T., Combust. Flame, 1996, vol. 106, p. 155.

    Article  CAS  Google Scholar 

  21. Hidaka, Y., Taniguchi, T., Tanaka, H., Kamesawa, T., Inami, K., and Kawano, H., Combust. Flame, 1993, vol. 92, p. 365.

    Article  CAS  Google Scholar 

  22. Blanquart, G., Pepiot-Desjardins, P., and Pitsch, H., Combust. Flame, 2009, vol. 156, p. 588.

    Article  CAS  Google Scholar 

  23. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., and Law, C.K., USC Mech Version II, High Temperature Combustion Reaction Model of H 2 /CO/C 1 –C 4 Compounds. http://ignis.usc.edu/USC-Mech_II.html.

  24. Richter, H., Granata, S., Green, W.H., and Howard, J.B., Proc. Combust. Inst., 2005, vol. 30, p. 1397.

    Article  Google Scholar 

  25. Skjøth-Rasmussen, M.S., Glarborg, P., Østberg, M., Johannessen, J.T., Livbjerg, H., Jensen, A.D., and Christensen, T.S., Combust. Flame, 2004, vol. 136, p. 91.

    Article  Google Scholar 

  26. Correa, C., Niemann, H., Schramm, B., and Warnatz, J., Proc. Combust. Inst., 2000, vol. 28, p. 1607.

    Article  CAS  Google Scholar 

  27. Frenklach, M. and Warnatz, J., Combust. Sci. Technol., 1987, vol. 51, p. 265.

    Article  CAS  Google Scholar 

  28. Wang, H., Dames, E., Sirjean, B., Sheen, D.A., Tangko, R., and Violi, A., A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures. JetSurF version 2.0. 2010. http://melchior.usc.edu/JetSurF/JetSurF2.0.

  29. Hansen, N., Klippenstein, S.J., Westmoreland, P.R., Kasper, T., Kohse-Hoinghaus, K., Wang, J., and Cool, T.A., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 366.

    Article  CAS  Google Scholar 

  30. Vlasov, P.A. and Warnatz, J., Proc. Combust. Inst., 2002.V. 29, p. 2335.

    Article  CAS  Google Scholar 

  31. Naydenova, I., Nullmeier, M., Warnatz, J., and Vlasov, P.A., Combust. Sci. Technol., 2004, vol. 176, p. 1667.

    Article  CAS  Google Scholar 

  32. Frenklach, M., Clary, D.W., Yuan, T., Gardiner, W.C., Jr., and Stein, S.E., Combust. Sci. Technol., 1986, vol. 50, p. 79.

    Article  CAS  Google Scholar 

  33. Böhm, H. and Jander, H., Phys. Chem. Chem. Phys., 1999, vol. 1, p. 3775.

    Article  Google Scholar 

  34. Agafonov, G.L., Mikhailov, D.I., Smirnov, V.N., Tereza, A.M., Vlasov, P.A., and Zhiltsova, I.V., Combust. Sci. Technol., 2016, vol. 188, p. 1815.

    Article  CAS  Google Scholar 

  35. Vlasov, P.A., Zhiltsova, I.V., Smirnov, V.N., Tereza, A.M., Agafonov, G.L., and Mikhailov, D.I., Combust. Sci. Technol., 2018, vol., 190, no. 1, p. 57.

    Article  CAS  Google Scholar 

  36. Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J., Int. J. Chem. Kinet., 2013, vol. 45, p. 638.

    Article  CAS  Google Scholar 

  37. Baigmohammadi, M., Patel, V., Nagaraja, S., Ramalingam, A., Martinez, S., Panigrahy, S., Mohamed, A., Somers, K.P., Burke, U., Heufer, K.A., Pekalski, A., and Curran, H.J., Energy Fuels, 2020, vol. 34, p. 8808.

    Article  CAS  Google Scholar 

  38. Davidson, D.F., Hanson, R.K., and Bowman, C.T., Int. J. Chem. Kinet., 1995, vol. 27, p. 305.

    Article  CAS  Google Scholar 

  39. Wang, S., Davidson, D.F., and Hanson, R.K., J. Phys. Chem. A, 2016, vol. 120, p. 5427.

    Article  CAS  Google Scholar 

  40. Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, Th., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., and Tsang, W., J. Phys. Chem., 2005, vol. 34, p. 757.

    CAS  Google Scholar 

  41. Simmie, J.M., Prog. Energy Combust. Sci., 2003, vol. 29, p. 599.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed under the Fundamental Research Program of state academies of sciences, topic FITs KhF RAN 0082-2019-0014 (state registration no. AAAA-A20-120020590084-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Vlasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and notation: MACRON, computer program; OpenChem Workbench, software package for determining the kinetic parameters of various reactions.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, P.A., Akhunyanov, A.R. & Smirnov, V.N. Experimental Studies and Simulation of Methane Pyrolysis and Oxidation in Reflected Shock Waves Accompanied by Soot Formation. Kinet Catal 63, 141–156 (2022). https://doi.org/10.1134/S0023158422020124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422020124

Keywords:

Navigation