Skip to main content
Log in

Catalytic Ozonation of Oxalic Acid in Aqueous Solution in the Presence of Manganese Ions

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of mineralization of oxalic acid Н2С2О4 under the action of ozone in acidic aqueous solution (С(НClО4) = 0.1 M, pH ~ 1) with the addition of \({\text{MnO}}_{4}^{ - }\) or Mn2+ ions was studied. It was found that manganese ions are effective catalysts for the reaction of O3 with oxalic acid. Regardless of the manganese species (\({\text{MnO}}_{4}^{ - }\) or Mn2+) added to the solution, it was converted into an oxalate complex of tetravalent manganese in the course of the reaction, and this complex was the stable form of the catalyst in the system under consideration. The kinetics of release of carbon dioxide—a product of the reaction of Н2С2О4 with О3—was determined depending on the concentrations of ozone in the gas stream and oxalic acid and manganese in the solution. A basic scheme of the catalysis of the test reaction by manganese ions was proposed, and a kinetic model was constructed to adequately describe the experimental results. The reaction scheme is based on the fact that oxalate is oxidized to CO2 in the course of a complex decomposition reaction of the oxalate complex of tetravalent manganese; in this case, Mn(IV) is reduced to Mn2+. The complex is regenerated by the oxidation of Mn2+ to Mn(IV) with ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Marcì, G., García–López, E., and Palmisano, L., J. Appl. Electrochem., 2008, vol. 38, no. 7, p. 1029.

    Article  Google Scholar 

  2. Bangun, J. and Adesina, A.A., Appl. Catal., A, 1998, vol. 175, no. 1, p. 221.

  3. Von Sonntag, C. and Von Gunten, U., Chemistry of Ozone in Water and Wastewater Treatment. From Basic Principles to Applications, London: IWA, 2012.

    Book  Google Scholar 

  4. Michael, K.M., Rizvi, G.H., Mathur, J.N., and Ramanujam, A., J. Radioanal. Nucl. Chem., 2000, vol. 246, no. 2, p. 355.

    Article  CAS  Google Scholar 

  5. Ganesh, S., Desigan, N., Chinnusamy, A., and Pandey, N.K., J. Radioanal. Nucl. Chem., 2021, vol. 328, no. 3, p. 857.

    Article  CAS  Google Scholar 

  6. Anan’ev, A.V., Tananaev, I.G., and Shilov, V.P., Russ. Chem. Rev., 2005, vol. 74, no. 11, p. 1039.

    Article  Google Scholar 

  7. Seliverstov, A.F., Lagunova, Yu.O., Ershov, B.G., and Shashkovskii, S.G., Russ. J. Gen. Chem., 2017, vol. 87, no. 11, p. 2533.

    Article  CAS  Google Scholar 

  8. Hoigné, J. and Bader, H., Water Res., 1983, vol. 17, no. 2, p. 185.

    Article  Google Scholar 

  9. Gogolev, A.V., Shilov, V.P., Garnov, A.Yu, and Anan’ev, A.V., Radiochemistry, 2006, vol. 48, no. 1, p. 31.

    Article  CAS  Google Scholar 

  10. Andreozzi, R., Insola, A., Caprio, V., and D’amore, M.G., Water Res., 1992, vol. 26, no. 7, p. 917.

    Article  CAS  Google Scholar 

  11. Andreozzi, R., Caprio, V., D’amore, M.G., and Insola, A., Environ. Technol., 1995, vol. 16, no. 9, p. 885.

    Article  CAS  Google Scholar 

  12. Andreozzi, R., Caprio, V., Insola, A., Marotta, R., and Tufano, V., Water Res., 1998, vol. 32, no. 5, p. 1492.

    Article  CAS  Google Scholar 

  13. Ma, J. and Graham, N.J.D., Water Res., 2000, vol. 34, no. 15, p. 3822.

    Article  CAS  Google Scholar 

  14. Qin, W., Tan, P., Song, Y., Wang, Z., Nie, J., and Ma, J., Sep. Purif. Technol., 2021, vol. 261, p. 118272.

    Article  CAS  Google Scholar 

  15. Xiao, H., Liu, R., Zhao, X., and Qu, J., J. Mol. Catal. A: Chem., 2008, vol. 286, no. 1, p. 149.

    Article  CAS  Google Scholar 

  16. Dong, Y., Yang, H., He, K., Song, S., and Zhang, A., Appl. Catal., B, 2009, vol. 85, no. 3, p. 155.

    Article  CAS  Google Scholar 

  17. Reisz, E., Leitzke, A., Jarocki, A., Irmscher, R., and Von Sonntag, C., J. Water Supply: Res. Technol.–AQUA, 2008, vol. 57, no. 6, p. 451.

    CAS  Google Scholar 

  18. Levanov, A.V., Kuskov, I.V., Antipenko, E.E., and Lunin, V.V., Russ. J. Phys. Chem., 2006, vol. 80, no. 4, p. 556.

    Google Scholar 

  19. Levanov, A.V., Isaikina, O.Y., and Kharlanov, A.N., Russ. J. Phys. Chem. A, 2020, vol. 94, no. 11, p. 2219.

    CAS  Google Scholar 

  20. Levanov, A.V., Isaikina, O.Y., Gasanova, R.B., and Lunin, V.V., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 8, p. 1427.

    CAS  Google Scholar 

  21. Levanov, A.V., Kuskov, I.V., Zosimov, A.V., Antipenko, E.E., and Lunin, V.V., J. Anal. Chem., 2003, vol. 58, no. 5, p. 439.

    Article  CAS  Google Scholar 

  22. Yukichi, Y., Iwao, T., Masakazu, K., and Takashi, U., Bull. Chem. Soc. Jpn., 1974, vol. 47, no. 11, p. 2787.

    Article  Google Scholar 

  23. Cartledge, G.H. and Ericks, W.P., J. Am. Chem. Soc., 1936, vol. 58, no. 10, p. 2069.

    Article  CAS  Google Scholar 

  24. Takashi, U., Iwao, T., and Yukichi, Y., Bull. Chem. Soc. Jpn., 1975, vol. 48, no. 10, p. 2809.

    Article  Google Scholar 

  25. Martell, A.E. and Smith, R.M., Critical Stability Constants, vol. 3. Other Organic Ligands, Boston: Springer, 1977.

    Book  Google Scholar 

  26. Kettler, R.M., Palmer, D.A., and Wesolowski, D.J., J. Solution Chem., 1991, vol. 20, no. 9, p. 905.

  27. Adler, S.J. and Noyes, R.M., J. Am. Chem. Soc., 1955, vol. 77, no. 8, p. 2036.

  28. Tyupalo, N.F. and Yakobi, B.A., Zh. Neorg. Khim., 1980, vol. 25, no. 6, p. 1557.

    CAS  Google Scholar 

  29. Jacobsen, F., Holcman, J., and Sehested, K., Int. J. Chem. Kinet., 1998, vol. 30, no. 3, p. 207.

    Article  CAS  Google Scholar 

  30. Levanov, A.V., Kuskov, I.V., Antipenko, E.E., and Lunin, V.V., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 7, p. 1126.

    CAS  Google Scholar 

  31. Levanov, A.V., Isaikina, O.Y., and Lunin, V.V., Russ. J. Phys. Chem. A, 2020, vol. 94, no. 1, p. 81.

    CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of the state assignment “Surface Physicochemistry, Adsorption, and Catalysis.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Levanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levanov, A.V., Isaikina, O.Y. & Gryaznov, R.A. Catalytic Ozonation of Oxalic Acid in Aqueous Solution in the Presence of Manganese Ions. Kinet Catal 63, 180–187 (2022). https://doi.org/10.1134/S0023158422020069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422020069

Keywords:

Navigation