Skip to main content
Log in

Promotion of iridium complex catalysts for HCOOH dehydrogenation by trace oxygen

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Ir complexes are important homogeneous catalysts for formic acid (FA) dehydrogenation. This paper reports that the activity of Ir complexes can be greatly improved through the activation by trace amounts of oxygen. After activation the activity of the heterodinuclear Ir–Ru catalyst increased 18-fold whereas for the mononuclear catalyst a 23-fold increase was observed. Oxygen is the key factor for the activation. But an excessive concentration of oxygen has a negative effect on the activity. There is an optimal concentration of H2O2 for the activation of Ir complex catalysts in HCOOH dehydrogenation. A very low concentration of oxygen (2.4 × 10–6 M) is needed for the activation of the heterodinuclear Ir–Ru catalyst while the mononuclear catalyst requires the presence of oxygen in a much higher concentration (290 × 10–6 M). From the results of the study it can be inferred that the activation of complex catalysts is due to the interplay of chemical and structural changes. These findings may be helpful in the attempts to improve the catalytic activity of homogeneous catalysts, which are widely used in formic acid dehydrogenation, CO2 reduction and in other processes. In addition, this paper indicates that iridium complexes are excellent catalysts for the direct synthesis of H2O2 from the H2 and O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grasemann, M., and Laurenczy, G., Energy, Environ. Sci., 2012, vol. 5, p. 8171.

    Article  CAS  Google Scholar 

  2. Liu, Q., Yang, X, Huang, Y., Xu, S., Su, X., Pan, X., Xu, J., Wang, A., Liang, C., and Wang, X., Energy Environ. Sci., 2015, vol. 8, p. 3204.

    Article  CAS  Google Scholar 

  3. Majewski, A., Morris, D.J., Kendall, K., and Wills, M., ChemSusChem, 2010, vol. 3, p. 431.

    Article  CAS  Google Scholar 

  4. Sponholz, P., Mellmann, D., Junge, H., and Beller, M., ChemSusChem, 2013, vol. 6, p. 1172.

    Article  CAS  Google Scholar 

  5. Johnson, T.C., Morris, D.J., and Wills, M., Chem. Soc. Rev., 2010, vol. 39, p. 81.

    Article  CAS  Google Scholar 

  6. Bavykina, A.V., Goesten, M.G., Kapteijn, F., Makkee, M., and Gascon, J., ChemSusChem, 2015, vol. 8, p. 809.

    Article  CAS  Google Scholar 

  7. Bulushev, D.A., Jia, L., Beloshapkin, S., and Ross, J.R., Chem. Commun., 2012, vol. 48, p. 4184.

    Article  CAS  Google Scholar 

  8. Yadav, M. and Xu, Q., Energy, Environ.Sci., 2012, vol. 5, p. 9698.

    Article  CAS  Google Scholar 

  9. Lin, X.Z., Li, G.C., Huang, C.J., Weng, W.Z., and Wan, H.L., Chin. Chem. Lett., 2013, vol. 24, p. 789.

    Article  CAS  Google Scholar 

  10. Zhao, Y.B., Tan, W.W., Li, H., Jia, X.H., and Wan, H.L., Chin. Chem. Lett., 2010, vol. 21, p. 1366.

    Article  CAS  Google Scholar 

  11. Wen, L., Zheng, Z., Luo, W., Cai, P., and Cheng, G.Z., Chin. Chem. Lett., 2015, vol. 26, p. 1345.

    Article  CAS  Google Scholar 

  12. Zhou, X., Huang, Y., Xing, W., Liu, C., Liao, J., and Lu, T., Chem. Commun., 2008, p. 3540.

    Google Scholar 

  13. Zhang, Z., Cao, S.-W., Liao, Y., and Xue, C., Appl. Catal., B, 2015, vol. 162, p. 204.

    Article  CAS  Google Scholar 

  14. Yang, L., Hua, X., Su, J., Luo, W., Chen, S., and Cheng, G., Appl. Catal., B, 2015, vol. 423, p. 168.

    Google Scholar 

  15. Federsel, C., Jackstell, R., and Beller, M., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, p. 6254.

    Article  CAS  Google Scholar 

  16. Mehdi, H., Fabos, V., Tuba, R., Bodor, A., Mika, L.T., and Horvath, I.T., Top. Catal., 2008, vol. 48, p. 49.

    Article  CAS  Google Scholar 

  17. Enthaler, S., von Langermann, J., and Schmidt, T., Energy Environ. Sci., 2010, vol. 3, p. 1207.

    Article  CAS  Google Scholar 

  18. Nielsen, M., Alberico, E., Baumann, W., Drexler, H.J., Junge, H., Gladiali, S., and Beller, M., Nature, 2013, vol. 495, p. 85.

    Article  CAS  Google Scholar 

  19. Fukuzumi, S., Kobayashi, T., and Suenobu, T., Angew. Chem., Int. Ed. Engl., 2011, vol. 50, p. 728.

    Article  CAS  Google Scholar 

  20. Guerriero, A., Bricout, H., Sordakis, K., Peruzzini, M., Monflier, E., Hapiot, F., Laurenczy, G., and Gonsalvi, L., ACS Catal., 2014, vol. 4, p. 3002.

    Article  CAS  Google Scholar 

  21. Boddien, A., Gartner, F., Jackstell, R., Junge, H., Spannenberg, A., Baumann, W., Ludwig, R., and Beller, M., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, p. 8993.

    Article  CAS  Google Scholar 

  22. Rodriguez-Lugo, R.E., Trincado, M., Vogt, M., Tewes, F., Santiso-Quinones, G., and Gruetzmacher, H., Nat. Chem., 2013, vol. 5, p. 342.

    Article  CAS  Google Scholar 

  23. Wang, Z.L., Yan, J.M., Ping, Y., Wang, H.L., Zheng, W.T., and Jiang, Q., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 4406.

    Article  CAS  Google Scholar 

  24. Bulut, A., Yurderi, M., Karatas, Y., Say, Z., Kivrak, H., Kaya, M., Gulcan, M., Ozensoy, E., an d Zahmakiran, M., ACS Catal., 2015, vol. 5, p. 6099.

    Article  CAS  Google Scholar 

  25. Bi, Q.Y., Du, X.L., Liu, Y.M., Cao, Y., He, H.Y., and Fan, K.N., J. Am. Chem. Soc., 2012, vol. 134, p. 8926.

    Article  CAS  Google Scholar 

  26. Cai, Y.Y., Li, X.H., Zhang, Y.N., Wei, X., Wang, K.X., and Chen, J.S., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 11822.

    Article  CAS  Google Scholar 

  27. Huang, Y., Zhou, X., Yin, M., Liu, C., and Xing, W., Chem. Mater., 2010, vol. 22, p. 5122.

    Article  CAS  Google Scholar 

  28. Jiang, K., Xu, K., Zou, S., and Cai, W.B., J. Am. Chem. Soc., 2014, vol. 136, p. 4861.

    Article  CAS  Google Scholar 

  29. Karatas, Y., Bulut, A., Yurderi, M., Ertas, I.E., Alal, O., Gulcan, M., Celebi, M., Kivrak, H., Kaya, M., and Zahmakiran, M., Appl. Catal., B, 2016, vol. 180, p. 586.

    Article  CAS  Google Scholar 

  30. Zhou, X.C., Huang, Y.J., Liu, C.P., Liao, J.H., Lu, T.H., and Xing, W., ChemSusChem, 2010, vol. 3, p. 1379.

    Article  CAS  Google Scholar 

  31. Qin, Y.L., Wang, J., Meng, F.Z., Wang, L.M., and Zhang, X.B., Chem. Commun., 2013, vol. 49, p. 10028.

    Article  CAS  Google Scholar 

  32. Wang, Z., Lu, S.M., Li, J., Wang, J., and Li, C., Chem. Eur. J., 2015, vol. 21, p. 12592.

    Article  CAS  Google Scholar 

  33. Shu, C., Leitner, A., and Hartwig, J.F., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, p. 4797.

    Article  CAS  Google Scholar 

  34. Kiener, C.A., Shu, C.T., Incarvito, C., and Hartwig, J.F., J. Am. Chem. Soc., 2003, vol. 125, p. 14272.

    Article  CAS  Google Scholar 

  35. Hull, J.F., Himeda, Y., Wang, W.-H., Hashiguchi, B., Periana, R., Szalda, D.J., Muckerman, J.T., and Fujita, E., Nat. Chem., 2012, vol. 4, p. 383.

    Article  CAS  Google Scholar 

  36. Leitner, A., Shekhar, S., Pouy, M.J., and Hartwig, J.F., J. Am. Chem. Soc., 2005, vol. 127, p. 15506.

    Article  CAS  Google Scholar 

  37. Marin, V., Holder, E., Hoogenboom, R., and Schubert, U.S., Chem. Soc. Rev., 2007, vol. 36, p. 618.

    Article  CAS  Google Scholar 

  38. Canivet, J., Suss-Fink, G., and Stepnicka, P., Eur. J. Inorg. Chem., 2007, vol. 2007, p. 4736.

    Article  Google Scholar 

  39. Fukuzumi, S., Kobayashi, T., and Suenobu, T., J. Am. Chem. Soc., 2010, vol. 132, p. 1496.

    Article  CAS  Google Scholar 

  40. Freakley, S.J., He, Q., Harrhy, J.H., Lu, L., Crole, D.A., Morgan, D.J., Ntainjua, E.N., Edwards, J.K., Carley, A.F., Borisevich, A.Y., Kiely, C.J., and Hutchings, G.J., Science, 2016, vol. 351, p. 965.

    Article  CAS  Google Scholar 

  41. Wilson, N.M. and Flaherty, D.W., J. Am. Chem. Soc., 2016, vol. 138, p. 574.

    Article  CAS  Google Scholar 

  42. Mishin, V., Gray, J.P., Heck, D.E., Laskin, D.L., and Laskin, J.D., Free Radical Biol. Med., 2010, vol. 48, p. 1485.

    Article  CAS  Google Scholar 

  43. Guo, Q., He, Y.F., and Lu, P., Proc. Natl. Acad. Sci. USA, 2015, vol. 112, p. 13904.

    Article  CAS  Google Scholar 

  44. Liu, Y., Guo, D.-S., Zhang, H.-Y., Ma, Y.-H., and Yang, E.-C., J. Phys. Chem. B, 2006, vol. 110, p. 3428.

    Article  CAS  Google Scholar 

  45. Fukuzumi, S., Kobayashi, T., and Suenobu, T., Chem-SusChem, 2008, vol. 1, p. 827.

    CAS  Google Scholar 

  46. Gao, S., Lin, Y., Jiao, X., Sun, Y., Luo, Q., Zhang, W., Li, D., Yang, J., and Xie, Y., Nature, 2016, vol. 529, p. 68.

    Article  CAS  Google Scholar 

  47. Boddien, A., Mellmann, D., Gaertner, F., Jackstell, R., Junge, H., Dyson, P.J., Laurenczy, G., Ludwig, R., and Beller, M., Science, 2011, vol. 333, p. 1733.

    Article  CAS  Google Scholar 

  48. Sanz, S., Benitez, M., and Peris, E., Organometallics, 2010, vol. 29, p. 275.

    Article  CAS  Google Scholar 

  49. Deng, J., Wang, Y., Pan, T., Xu, Q., Guo, Q.-X., and Fu, Y., ChemSusChem, 2013, vol. 6, p. 1163.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Zhou.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Shen, Y., Du, Y. et al. Promotion of iridium complex catalysts for HCOOH dehydrogenation by trace oxygen. Kinet Catal 58, 499–505 (2017). https://doi.org/10.1134/S002315841705024X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841705024X

Keywords

Navigation