Skip to main content
Log in

Development of a Ni–Pd/CeZrO2/Al2O3 catalyst for the effective conversion of methane into hydrogen-containing gas

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effects of the Pd content (0–1 wt %) and the synthesis method (joint impregnation with Ni + Pd and Pd/Ni or Ni/Pd sequential impregnation) on the physicochemical and catalytic properties of Ni–Pd/CeZrO2/Al2O3 were studied in order to develop an efficient catalyst for the conversion of methane into hydrogen-containing gas. It was shown that variation in the palladium content and a change in the method used for the introduction of an active constituent into the support matrix make it possible to regulate the redox properties of nickel cations but do not affect the size of NiO particles (14.0 ± 0.5 nm) and the phase composition of the catalyst ((γ + δ)-Al2O3, CeZrO2 solid solution, and NiO). It was established that the activity of Ni–Pd catalysts in the reaction of autothermal methane reforming depends on the method of synthesis and increases in the following order: Ni + Pd < Ni/Pd < Pd/Ni. It was found that, as the Pd content of the Ni–Pd/CeZrO2/Al2O3 catalyst was decreased from 1 to 0.05 wt %, the ability for self-activation, high activity, and operational stability of the catalyst under the conditions of autothermal methane reforming remained unaffected: at 850°C, the yield of hydrogen was ~70% at a methane conversion of ~100% during a 24-h reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Navarro, R.M., Guil, R., and Fierro, J.L.G., in Compendium of Hydrogen Energy, vol. 1: Hydrogen Production and Purification, Amsterdam: Elsevier, 2015, p. 21.

    Book  Google Scholar 

  2. Balat, M., Int. J. Hydrogen Energy, 2008, vol. 33, p. 4013.

    Article  CAS  Google Scholar 

  3. Mueller-Langer, F., Tzimas, E., Kaltschmitt, M., and Peteves, S., Int. J. Hydrogen Energy, 2007, vol. 32, p. 3797.

    Article  CAS  Google Scholar 

  4. Muradov, N.Z. and Veziroglu, T.N., Int. J. Hydrogen Energy, 2008, vol. 33, p. 6804.

    Article  CAS  Google Scholar 

  5. Ball, M. and Wietschel, M., Int. J. Hydrogen Energy, 2009, vol. 34, p. 615.

    Article  CAS  Google Scholar 

  6. Katikaneni, S.P., Al-Muhaish, F., Harale, A., and Pham, T.V., Int. J. Hydrogen Energy, 2014, vol. 39, p. 4331.

    Article  CAS  Google Scholar 

  7. García, L., in Compendium of Hydrogen Energy, vol. 1: Hydrogen Production and Purification, Amsterdam: Elsevier, 2015, p. 83.

    Book  Google Scholar 

  8. Holladay, J.D., Hu, J., King, D.L., and Wang, Y., Catal. Today, 2009, vol. 139, p. 244.

    Article  CAS  Google Scholar 

  9. Arutyunov, V.S., Okislitel’naya konversiya prirodnogo gaza (Oxidative Reforming of Natural Gas), Moscow: Krasand, 2011.

    Google Scholar 

  10. Dal Santo, V., Gallo, A., Naldoni, A., Guidotti, M., and Psaro, R., Catal. Today, 2012, vol. 197, p. 190.

    Article  Google Scholar 

  11. Nakagawa, D., Li, Y., and Tomishige, K., Appl. Catal., A, 2011, vol. 408, p. 1.

    Article  Google Scholar 

  12. Angeli, S.D., Monteleone, G., Giaconia, A., and Lemonidou, A.A., Int. J. Hydrogen Energy, 2014, vol. 39, p. 1979.

    Article  CAS  Google Scholar 

  13. LeValley, T.L., Richard, A.R., and Fan, M., Int. J. Hydrogen Energy, 2014, vol. 39, p. 16983.

    Article  CAS  Google Scholar 

  14. Nahar, G. and Dupont, V., Resent Pat. Chem. Eng., 2013, vol. 6, p. 8.

    Article  CAS  Google Scholar 

  15. Li, D., Shishido, M., Oumi, Y., Sano, T., and Takehira, K., Appl. Catal., A, 2007, vol. 332, p. 98.

    Article  CAS  Google Scholar 

  16. Miyata, T., Li, D., Shiraga, M., Shishido, T., Oumi, Y., Sano, T., and Takehira, K., Appl. Catal., A, 2006, vol. 310, p. 97.

    Article  CAS  Google Scholar 

  17. Chin, Y.-H., King, D.L., Roh, H.-S., Wang, Y., and Heald, S.M., J. Catal., 2006, vol. 244, p. 153.

    Article  CAS  Google Scholar 

  18. Xie, C., Chen, Y., Li, Y., Wang, X., and Song, C., Appl. Catal., A, 2010, vol. 390, p. 210.

    Article  CAS  Google Scholar 

  19. Luna, E.C., Becerra, A.M., and Dimitrijewits, M.I., React. Kinet. Catal. Lett., 1999, vol. 67, p. 247.

    Article  CAS  Google Scholar 

  20. Yoshida, K., Begum, N., Ito, S.-I., and Tomishige, K., Appl. Catal., A, 2009, vol. 358, p. 186.

    Article  CAS  Google Scholar 

  21. Dantas, S.C., Escritori, J.C., Soares, R.R., and Hori, C.E., Chem. Eng. J., 2010, vol. 156, p. 380.

    Article  CAS  Google Scholar 

  22. Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Yashnik, S.A., Prosvirin, I.P., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Appl. Catal., A, 2014, vol. 481, p. 104.

    Article  CAS  Google Scholar 

  23. Garcia-Dieguez, M., Finocchio, E., Larrubia, M.A., Alemany, L.J., and Busca, G., J. Catal., 2010, vol. 274, p. 11.

    Article  CAS  Google Scholar 

  24. Yoshida, K., Okumura, K., Miyao, T., Naito, S., Ito, S.-I., Kunimori, K., and Tomishige, K., Appl. Catal., A, 2008, vol. 351, p. 217.

    Article  CAS  Google Scholar 

  25. Lakhapatri, S.L. and Abraham, M.A., Appl. Catal., A, 2011, vol. 405, p. 149.

    Article  CAS  Google Scholar 

  26. Morales-Cano, F., Lundegaard, L.F., Tiruvalam, R.R., Falsig, H., and Skjoth-Rasmussen, M.S., Appl. Catal., A, 2015, vol. 498, p. 117.

    Article  CAS  Google Scholar 

  27. Gokaliler, F., Gocmen, B.A., and Aksoylu, A.E., Int. J. Hydrogen Energy, 2008, vol. 33, p. 4358.

    Article  CAS  Google Scholar 

  28. Mukainakano, Y., Li, B., Kado, S., Miyazawa, T., Okumura, K., Miyao, T., Naito, S., Kunimori, K., and Tomishige, K., Appl. Catal., A, 2007, vol. 318, p. 252.

    Article  CAS  Google Scholar 

  29. Ismagilov, I.Z., Matus, E.V., Nefedova, D.V., Kuznetsov, V.V., Yashnik, S.A., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2015, vol. 56, no. 3, p. 394.

    Article  CAS  Google Scholar 

  30. Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Prosvirin, I.P., Mota, N., Navarro, R.M., Fierro, J.L.G., and Ismagilov, Z.R., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20992.

    Article  CAS  Google Scholar 

  31. Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Catal. Today, 2013, vol. 210, p. 10.

    Article  CAS  Google Scholar 

  32. Montoya, J.A., Romero-Pascual, E., Gimon, C., Del Angel, D., and Monzon, A., Catal. Today, 2000, vol. 63, p. 71.

    Article  CAS  Google Scholar 

  33. Lisboa, J.S., Terra, L.E., Silva, P.R.J., Saitovitch, H., and Passos, F.B., Fuel Process. Technol., 2011, vol. 92, p. 2075.

    Article  CAS  Google Scholar 

  34. Abreu, A.J., Lucredio, A.F., and Assaf, E.M., Fuel Process. Technol., 2012, vol. 102, p. 140.

    Article  Google Scholar 

  35. Tsipouriari, V.A. and Verykios, X.E., Catal. Today, 2001, vol. 64, p. 83.

    Article  CAS  Google Scholar 

  36. Dias, J.A.C. and Assaf, J.M., Appl. Catal., A, 2008, vol. 334, p. 243.

    Article  CAS  Google Scholar 

  37. Wang, Y.H. and Zhang, J.C., Fuel, 2005, vol. 84, p. 1926.

    Article  CAS  Google Scholar 

  38. Xiulan, C., Yuanxing, C., and Weiming, L., J. Nat. Gas Chem., 2008, vol. 17, p. 201.

    Article  Google Scholar 

  39. Hufschmidt, D., Bobadill, L.F., Romero-Sarria, F., Centeno, M.A., Odriozola, J.A., Montes, M., and Falabella, E., Catal. Today, 2010, vol. 149, p. 394.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Matus.

Additional information

Original Russian Text © M.A. Kerzhentsev, E.V. Matus, I.A. Rundau, V.V. Kuznetsov, I.Z. Ismagilov, V.A. Ushakov, S.A. Yashnik, Z.R. Ismagilov, 2017, published in Kinetika i Kataliz, 2017, Vol. 58, No. 5, pp. 614–622.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerzhentsev, M.A., Matus, E.V., Rundau, I.A. et al. Development of a Ni–Pd/CeZrO2/Al2O3 catalyst for the effective conversion of methane into hydrogen-containing gas. Kinet Catal 58, 601–609 (2017). https://doi.org/10.1134/S002315841705010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841705010X

Keywords

Navigation