Skip to main content
Log in

Role of hydrogen enrichment on acetylene emission during benzene oxidation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A zero-dimensional model (perfectly-stirred reactor) in conjunction with CHEMKIN II and a scheme resulting from the merging of validated kinetic schemes for the oxidation of benzene were used to investigate the effect of hydrogen addition on the formation-depletion of C2H2, which is known as a soot precursor. The current modeling study treats the dependence of acetylene amounts on hydrogen percentage in the fuel mixture, and defines the key reaction mechanisms responsible for the observed reduction in C2H2 and consequently in polycyclic aromatic hydrocarbons and soot amounts induced by the hydrogen additive. The main objective of this work was to obtain fundamental understanding of the mechanisms, through which the hydrogen affects the acetylene yields. It was found that, at high temperatures hydrogen/benzene fuel mixtures displayed lower acetylene concentrations compared to the pure benzene fuel, whereas opposite trends were observed at low reaction temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrios, C.C., Martín, C., Domínguez-Sáez, A., Álvarez, P., Pujadas, M., and Casanova, J., Fuel, 2014, vol. 132, p. 93.

    Article  CAS  Google Scholar 

  2. Gu, X., Zhang, F., Guo, Y., and Kaiser, R.I., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, p. 6866.

    Article  CAS  Google Scholar 

  3. Hylland, K., J. Toxicol. Environ. Health, 2006, vol. 69, nos. 1–2, p. 109.

    Article  CAS  Google Scholar 

  4. Jones, B., Zhang, F., Maksyutenko, P., Mebel, A.M., and Kaiser, R.I., J. Phys. Chem. A, 2010, vol. 114, p. 5256.

    Article  CAS  Google Scholar 

  5. Omidvarborna, H., Kumar, A., and Kim, D.S., Renewable Sustainable Energy Rev., 2015, vol. 48, p. 635.

    Article  CAS  Google Scholar 

  6. Shahabuddin, M., Liaquat, A.M., Masjuki, H.H., Kalam, M.A., and Mofijur, M., Renewable Sustainable Energy Rev., 2013, vol. 21, p. 623.

    Article  CAS  Google Scholar 

  7. Xue, J., Grift, T.E., and Hansen, A.C., Renewable Sustainable Energy Rev., 2011, vol. 15, p. 1098.

    Article  CAS  Google Scholar 

  8. Grundmann, J., Müller, S., Zahn, R.-J., Quade, A., and Steffen, H., Top. Catal., 2007, vols. 42–43, p. 303.

    Article  Google Scholar 

  9. Golea, D., Rezgui, Y., Guemini, M., and Hamdane, S., J. Phys. Chem. A, 2012, vol. 116, p. 3625.

    Article  CAS  Google Scholar 

  10. Westbrook, C.K., Pitz, W.J., and Curran, H.J., J. Phys. Chem. A, 2006, vol. 110, p. 6912.

    Article  CAS  Google Scholar 

  11. Geng, P., Zhang, H., and Yang, S., Fuel, 2015, vol. 145, p. 221.

    Article  CAS  Google Scholar 

  12. Wei, L., Yao, C., Wang, Q., Pan, W., and Han, G., Fuel, 2015, vol. 140, p. 156.

    Article  CAS  Google Scholar 

  13. Rezgui, Y. and Guemini, M., Environ. Sci. Pollut. Res., 2014, vol. 21, p. 6671.

    Article  CAS  Google Scholar 

  14. Mofijur, M., Rasul, M.G., Hyde, J., Azad, A.K., Mamat, R., and Bhuiya, M.M.K., Renewable Sustainable Energy Rev., 2016, vol. 53, p. 265.

    Article  CAS  Google Scholar 

  15. de Oliveira, A., de Morais, A.M., Valente, O.S., and Sodré, J.R., Fuel Process. Technol., 2015, vol. 139, p. 67.

    Article  Google Scholar 

  16. Kumar, B.R. and Saravanan, S., Fuel, 2016, vol. 170, p. 49.

    Article  Google Scholar 

  17. Boussid, N. and Rezgui, Y., Kinet. Catal., 2015, vol. 56, p. 31.

    Article  CAS  Google Scholar 

  18. Polat, S., Fuel Process. Technol., 2016, vol. 143, p. 140.

    Article  CAS  Google Scholar 

  19. Dhamodaran, G., Esakkimuthu, G.S., and Pochareddy, Y.K., Fuel, 2016, vol. 173, p. 37.

    Article  CAS  Google Scholar 

  20. Catapano, F., Iorio, S.D., Magno, A., Sementa, P., and Vaglieco, B.M., Energy, 2015, vol. 88, p. 101.

    Article  CAS  Google Scholar 

  21. Du, Y., Yu, X., Wang, J., Wu, H., Dong, W., and Gu, J., Int. J. Hydrogen Energy, 2016, vol. 41, p. 3240.

    Article  CAS  Google Scholar 

  22. Song, K.H., Nag, P., Litzinger, T.A., and Haworth, D.C., Combust. Flame, 2003, vol. 135, p. 341.

    Article  CAS  Google Scholar 

  23. Cheng, Y., Tang, C., and Huang, Z., Int. J. Hydrogen Energy, 2015, vol. 40, p. 703.

    Article  CAS  Google Scholar 

  24. Tang, C., Zhang, Y., and Huang, Z., Renewable Sustainable Energy Rev., 2014, vol. 30, p. 195.

    Article  CAS  Google Scholar 

  25. Wierzba, I. and Kilchyk, V., Int. J. Hydrogen Energy, 2001, vol. 26, p. 639.

    Article  CAS  Google Scholar 

  26. Kashir, B., Tabejamaat, S., and Jalalatian, N., Energy Convers. Manage., 2015, vol. 103, p. 1.

    Article  CAS  Google Scholar 

  27. Zhen, H.S., Cheung, C.S., Leung, C.W., and Choy, Y.S., Int. J. Hydrogen Energy, 2012, vol. 37, p. 6097.

    Article  CAS  Google Scholar 

  28. Hu, E., Huang, Z., He, J., Jin, C., and Zheng, J., Int. J. Hydrogen Energy, 2009, vol. 34, no. 11, p. 4876.

    Article  CAS  Google Scholar 

  29. Boushaki, T., Dhue, Y., Selle, L., Ferret, B., and Poinsot, T., Int. J. Hydrogen Energy, 2012, vol. 37, no. 11, p. 9412.

    Article  CAS  Google Scholar 

  30. Guo, H., Liu, F., Smallwood, G.J., and Gulder, L., Combust. Flame, 2006, vol. 145, no. 1, p. 324.

    Article  CAS  Google Scholar 

  31. Wang, F., Li, P., Mi, J., Wang, J., and Xu, M., Int. J. Hydrogen Energy, 2015, vol. 40, no. 46, p. 16634.

    Article  CAS  Google Scholar 

  32. Tang, C., Huang, Z., Wang, J., and Zheng, J., Int. J. Hydrogen Energy, 2009, vol. 34, no. 5, p. 2483.

    Article  CAS  Google Scholar 

  33. Titova, N.S., Kuleshov, P.S., Favorskii, O.N., and Starik, A.M., Int. J. Hydrogen Energy, 2014, vol. 39, no. 12, p. 6764.

    Article  CAS  Google Scholar 

  34. Guo, H. and Stuart Neil, W., Int. J. Hydrogen Energy, 2013, vol. 38, no. 26, p. 11429.

    Article  CAS  Google Scholar 

  35. Aggarwal, S.K., Awomolo, O., and Akbe, K., Int. J. Hydrogen Energy, 2011, vol. 36, no. 23, p. 15392.

    Article  CAS  Google Scholar 

  36. Hui, X., Zhang, C., Xia, M., and Sung, C.J., Combust. Flame, 2014, vol. 161, no. 9, p. 2252.

    Article  CAS  Google Scholar 

  37. Mandilas, C., Ormsby, M., Sheppard, C., and Woolley, R., Proc. Combust. Inst., 2007, vol. 31, no. 1, p. 1443.

    Article  Google Scholar 

  38. Aravind, B., Kishore, V.R., and Mohammad, A., Int. J. Hydrogen Energy, 2015, vol. 40, no. 46, p. 16605.

    Article  CAS  Google Scholar 

  39. Wang, S., Ji, C., Zhang, B., and Zhou, X., Energy Procedia, 2014, vol. 61, p. 323.

    Article  CAS  Google Scholar 

  40. Shivaprasad, K.V., Raviteja, S., Parashuram Chitragar, and Kumar, G.N., Procedia Technol., 2014, vol. 14, p. 141.

    Article  Google Scholar 

  41. Zhou, J.H., Cheung, C.S., and Leung, C.W., Appl. Energy, 2014, vol. 126, p. 1.

    Article  CAS  Google Scholar 

  42. Dhanasekaran, C. and Mohankumar, G., Int. J. Hydrogen Energy, 2016, vol. 41, no. 1, p. 713.

    Article  CAS  Google Scholar 

  43. Yang, J., Zhao, L., Yuan, W., Qi, F., and Li, Y., Proc. Combust. Inst., 2015, vol. 35, p. 855.

    Article  CAS  Google Scholar 

  44. Tan, Y. and Frank, P., Proc. Combust. Inst., 1996, vol. 26, p. 677.

    Article  Google Scholar 

  45. Vourliotakis, G., Skevis, G., and Founti, M.A., Energy Fuels, 2011, vol. 25, p. 1950.

    Article  CAS  Google Scholar 

  46. Eremin, A., Gurentsov, E., and Mikheyeva, E., Combust. Flame, 2015, vol. 162, p. 207.

    Article  CAS  Google Scholar 

  47. Jin, H., Frassoldati, A., Wang, Y., Zhang, X., Zeng, M., Li, Y., Qi, F., Cuoci, A., and Faravelli, T., Combust. Flame, 2015, vol. 162, p. 1692.

    Article  CAS  Google Scholar 

  48. Sivaramakrishnan, R., Brezinsky, K., Vasudevan, H., and Tranter, R.S., Combust. Sci. Technol., 2006, vol. 178, p. 285.

    Article  CAS  Google Scholar 

  49. Omidvarborna, H., Kumar, A., and Kim, D.S., Renewable Sustainable Energy Rev., 2015, vol. 48, p. 635.

    Article  CAS  Google Scholar 

  50. Frenklach, M., Clary, D.W., Gardiner, W.C., and Stein, S.E., Proc. Combust. Inst., 1985, vol. 20, p. 887.

    Article  Google Scholar 

  51. Frenklach, M. and Warnatz, J., Combust. Sci. Technol., 1987, vol. 51, p. 265.

    Article  CAS  Google Scholar 

  52. Brukh, R., Salem, T., Slanvetpan, T., Barat, R., and Mitra, S., Adv. Environ. Res., 2002, vol. 6, p. 359.

    Article  CAS  Google Scholar 

  53. Richter, H. and Howard, J.B., Phys. Chem. Chem. Phys., 2002, vol. 4, p. 2038.

    Article  CAS  Google Scholar 

  54. Glarborg, P., Kee, R.J., Grcar, J.F., and Mille, J.A., SAND86-8209, Livermore, Calif. Sandia National Laboratories, 1986.

    Google Scholar 

  55. Ristori, A., Dagaut, P., El Bakali, A., Pengloan, G., and Cathonnet, M., Combust. Sci. Technol., 2001, vol. 167, p. 223.

    Article  CAS  Google Scholar 

  56. Abian, M., Esarte, C., Millera, A., Bilbao, R., and Alzueta, M.U., Energy Fuels, 2008, vol. 22, p. 3814.

    Article  CAS  Google Scholar 

  57. Alzueta, M.U., Borruey, M., Callejas, A., Millera, A., and Bilbao, R., Combust. Flame, 2008, vol. 152, p. 377.

    Article  CAS  Google Scholar 

  58. Gulder, O.L., Snelling, D.R., and Sawchuk, R.A., Symp. Combust., 1996, vol. 26, p. 2351.

    Article  Google Scholar 

  59. Abian, M., Millera, A., Bilbao, R., and Alzueta, M.U., Combust. Sci. Technol., 2012, vol. 184, p. 980.

    Article  CAS  Google Scholar 

  60. Cong, T. and Dagaut, P., Combust. Sci. Technol., 2008, vol. 180, p. 2046.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Rezgui.

Additional information

Published in Russian in Kinetika i Kataliz, 2017, Vol. 58, No. 3, pp. 356–366.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezgui, Y. Role of hydrogen enrichment on acetylene emission during benzene oxidation. Kinet Catal 58, 339–348 (2017). https://doi.org/10.1134/S0023158417030107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417030107

Keywords

Navigation