Skip to main content
Log in

Dissolution of oxygen in polycrystalline palladium at \({P_{{O_2}}}\)= 100 Pa and temperatures of 500 to 950 K

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The dissolution of oxygen in polycrystalline palladium Pd(poly) at an O2 pressure of 100 Pa and temperatures of 500–950 K has been investigated by temperature-programmed desorption. At 500 K, the process yields a surface palladium film that includes an oxide-like reconstructed structure on a rarefied metal surface layer. At this temperature, palladium sorbs ~2 monolayers (ML) of oxygen. At 600–800 K, palladium dissolves up to ~140 ML of oxygen as a result of O2 chemisorption on the surface of the oxide film, penetration of Oads atoms under the oxide film, and their diffusion into the metal bulk. The dependence of the amount of oxygen sorbed by Pd(poly) (n) on the time of exposure to an O2 atmosphere is described by a nearparabolic function, n = atb, indicating that oxygen atoms diffuse in the metal lattice. The activation energy of this diffusion, Е dif, is ~83.5 kJ/mol. At high temperatures (800–950 K), palladium sorbs much less oxygen (≤10 ML). This is due to the complete decomposition of the surface oxide film, a process that markedly hampers the insertion of Oads atoms under the surface layer of the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jonson, M. http://www.platinum.matthey.com/ applications/.

  2. Kummer, J.T., in Catalysts for the Control of Automotive Pollutants, Advances in Chemistry Series, vol. 143, McEvoy, J.E, Ed., Washington, DC: Am. Chem. Soc, 1975, p. 178.

  3. Anderson, R.B., Stein, K.C., Feenan, J.J., and Hofer, L.J.E., Ind. Eng. Chem., 1961, vol. 53, p. 809.

    Article  CAS  Google Scholar 

  4. Ziauddin, M., Veser, G., and Schmidt, L.D., Catal. Lett., 1997, vol. 46, p. 159.

    Article  CAS  Google Scholar 

  5. Veser, G., Ziauddin, M., and Schmidt, L.D., Catal. Today, 1999, vol. 47, p. 219.

    Article  CAS  Google Scholar 

  6. Farrauto, R.J., Hobson, M.C., Kennelly, T., and Waterman, E.M., Appl. Catal., A, 1992, vol. 81, p. 227.

    Article  CAS  Google Scholar 

  7. Lyubovsky, M., Pfefferle, L., Abhaya, A., and Bravo, J., J. Catal., 1999, vol. 187, p. 275.

    Article  CAS  Google Scholar 

  8. Groppi, G., Cristiani, C., Lietti, L., and Forzatti, P., Stud. Surf. Sci. Catal., 2000, vol. 130, p. 3801.

    Article  Google Scholar 

  9. Jonson, M., Platinum 1999–2012, Interim Review. http://www.platinum.matthey.com/services/marketresearch/market-review-archive/platinum-2012-interimreview.

  10. Lee, J.H. and Trimm, D.L., Fuel Process. Technol., 1995, vol. 42, p. 339.

    Article  CAS  Google Scholar 

  11. Engel, T. and Ertl, G., Adv. Catal., 1979, vol. 28, p. 1.

    CAS  Google Scholar 

  12. Milun, M. and Pervan, P., Surf. Sci., 1989, vol. 218, p. 363.

    Article  CAS  Google Scholar 

  13. Banse, B.A. and Koel, B.E., Surf. Sci., 1990, vol. 232, p. 275.

    Article  CAS  Google Scholar 

  14. Leisenberger, F.P., Koller, G., Sock, M., Surnev, S., Ramsey, M.G., Netzer, F.P., Klötzer, B., and Hayek, K., Surf. Sci., 2000, vol. 445, p. 380.

    Article  CAS  Google Scholar 

  15. Zheng, G. and Altman, E.I., Surf. Sci., 2000, vol. 462, p. 151.

    Article  CAS  Google Scholar 

  16. Klötzer, B., Hayek, K., Konvicka, C., Lundgren, E., and Varga, P., Surf. Sci., 2001, vols. 482–485, p. 237.

    Article  Google Scholar 

  17. Lundgren, E., Kresse, G., Klein, C., Borg, M., Andersen, J.N., De Santis, M., Gauthier, Y., Konvicka, C., Schmid, M., and Varga, P., Phys. Rev. Lett., 2002, vol. 88, no. 24, p. 246103.

    Article  CAS  Google Scholar 

  18. Gabasch, H., Unterberger, W., Hayek, K., Klötzer, B., Kresse, G., Klein, C., Schmid, M., and Varga, P., Surf. Sci., 2006, vol. 600, p. 205.

    Article  CAS  Google Scholar 

  19. Kan, H.H., Shumbera, R.B., and Weaver, J.F., Surf. Sci., 2008, vol. 602, p. 1337.

    Article  CAS  Google Scholar 

  20. Chang, S.L. and Thiel, P.A., J. Chem. Phys., 1988, vol. 88, p. 2071.

    Article  CAS  Google Scholar 

  21. Chang, S.L., Thiel, P.A., and Evans, J.W., Surf. Sci., 1988, vol. 205, p. 117.

    Article  CAS  Google Scholar 

  22. Klier, K., Wang, Y-N., and Simmons, G.W., J. Phys. Chem., 1993, vol. 97, p. 633.

    Article  CAS  Google Scholar 

  23. Zheng, G. and Altman, E.I., Surf. Sci., 2002, vol. 504, p. 253.

    Article  CAS  Google Scholar 

  24. Todorova, M., Lundgren, E., Blum, V., Mikkelsen, A., Gray, S., Gustafson, J., Borg, M., Rogal, J., Reuter, K., Andersen, J.N., and Scheffler, M., Surf. Sci., 2003, vol. 541, p. 101.

    Article  CAS  Google Scholar 

  25. Lundgren, E., Gustafson, J., Mikkelsen, A., and Andersen, J.N., Phys. Rev. Lett., 2004, vol. 92, no. 4, p. 046101.

    Article  CAS  Google Scholar 

  26. He, J.-W. and Norton, P.R., Surf. Sci., 1988, vol. 204, p. 26.

    Article  CAS  Google Scholar 

  27. He, J.-W., Memmert, U., Griffiths, K., and Norton, P.R., J. Chem. Phys., 1989, vol. 90, p. 5088.

    Article  CAS  Google Scholar 

  28. Bennett, R.A., Poulston, S., Jones, I.Z., and Bowker, M., Surf. Sci., 1998, vol. 401, p. 72.

    Article  CAS  Google Scholar 

  29. Tanaka, H., Yoshinobu, J., and Kawai, M., Surf. Sci., 1995, vol. 327, p. L505.

    Article  CAS  Google Scholar 

  30. Todorova, M., Reuter, K., and Scheffler, M., Phys. Rev. B: Condens. Matter, 2005, vol. 71, p. 195403.

    Article  Google Scholar 

  31. Campbell, C.T., Foyt, D.C., and White, J.M., J. Phys. Chem., 1977, vol. 81, p. 491.

    Article  CAS  Google Scholar 

  32. Han, J., Zemlyanov, D.Y., and Ribeiro, F.H., Surf. Sci., 2006, vol. 600, p. 2752.

    Article  CAS  Google Scholar 

  33. Han, J., Zemlyanov, D.Y., and Ribeiro, F.H., Surf. Sci., 2006, vol. 600, p. 2730.

    Article  CAS  Google Scholar 

  34. Han, J., Zhu, G., Zemlyanov, D.Y., and Ribeiro, F.H., J. Catal., 2004, vol. 225, p. 7.

    Article  CAS  Google Scholar 

  35. Park, J.-W. and Altstetter, C.J., Scr. Metall., 1985, vol. 19, p. 1481.

    Article  CAS  Google Scholar 

  36. Wang, D. and Flanagan, T.B., Scr. Mater., 2005, vol. 52, p. 599.

    Article  CAS  Google Scholar 

  37. Gegner, J., Horz, G., and Kirchheim, R., Interface Sci., 1997, vol. 5, p. 231.

    Article  CAS  Google Scholar 

  38. Kofstad, P., High-Temperature Oxidation of Metals, New York: Wiley, 1966.

    Google Scholar 

  39. Salanov, A.N., Titkov, A.I., and Bibin, V.N., Kinet. Catal., 2006, vol. 47, no. 3, p. 430.

    Article  CAS  Google Scholar 

  40. Salanov, A.N. and Suprun, E.A., Kinet. Catal., 2009, vol. 50, no. 1, p. 31.

    Article  CAS  Google Scholar 

  41. Salanov, A.N. and Suprun, E.A., Kinet. Catal., 2010, vol. 51, no. 3, p. 416.

    Article  CAS  Google Scholar 

  42. Salanov, A.N. and Suprun, E.A., Kinet. Catal., 2013, vol. 54, no. 1, p. 106.

    Article  CAS  Google Scholar 

  43. Salanov, A.N. and Suprun, E.A., Kinet. Catal., 2016, vol. 57, no. 2, p. 263.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Salanov.

Additional information

Original Russian Text © E.A. Suprun, A.N. Salanov, 2017, published in Kinetika i Kataliz, 2017, Vol. 58, No. 1, pp. 98–111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suprun, E.A., Salanov, A.N. Dissolution of oxygen in polycrystalline palladium at \({P_{{O_2}}}\)= 100 Pa and temperatures of 500 to 950 K. Kinet Catal 58, 92–103 (2017). https://doi.org/10.1134/S0023158417010116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417010116

Keywords

Navigation