Skip to main content
Log in

Catalytic properties of nanostructured Pd–Ag catalysts in the liquid-phase hydrogenation of terminal and internal alkynes

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A comparative catalytic study of Pd–Ag bimetallic catalysts and the commercial Lindlar catalyst (Pd–Pb/CaCO3) has been carried out in the hydrogenation of phenylacetylene (PA) and diphenylacetylene (DPA). The Pd–Ag catalysts have been prepared using the heterobimetallic complex PdAg2(OAc)4(HOAc)4 supported on MgAl2O4 and aluminas (α-Al2O3 and γ-Al2O3). Physicochemical studies have demonstrated that the reduction of supported Pd–Ag complex with hydrogen results in homogeneous Pd–Ag nanoparticles. Equal in selectivity to the Lindlar catalyst, the Pd–Ag catalysts are more active in DPA hydrogenation. The synthesized Pd–Ag catalysts are active and selective in PA hydrogenation as well, but the unfavorable ratio of the rates of the first and second stages of the process makes it difficult to kinetically control the reaction. The most promising results have been obtained for the Pd–Ag2/α-Al2O3 catalyst. Although this catalyst is less active, it is very selective and allows efficient kinetic control of the process to be carried out owing to the fact that, with this catalyst, the rate of hydrogenation of the resulting styrene is much lower than the rate of hydrogenation of the initial PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitsudome, T., Takahashi, Y., Ichikawa, S., Mizugaki, T., Jitsukawa, K., and Kaneda, K., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 1481.

    Article  CAS  Google Scholar 

  2. Oger, C., Balas, L., Durand, T., and Galano, J.-M., Chem. Rev., 2013, vol. 113, p. 1313.

    Article  CAS  Google Scholar 

  3. Karakhanov, E.A., Maksimov, A.L., Aksenov, I.A., Kuznetsov, V.S., Filippova, T.Yu., Kardashev, S.V., and Volkov, D.S., Russ. Chem. Bull., 2014, vol. 63, no. 8, p. 1710.

    Article  CAS  Google Scholar 

  4. Wilhite, B.A., McCready, M.J., and Varma, A., Ind. Eng. Chem. Res., 2002, vol. 41, p. 3345.

    Article  CAS  Google Scholar 

  5. Domínguez-Domínguez, S., Berenguer-Murcia, A., Linares-Solano, A., and Cazorla-Amorós, D., J. Catal., 2008, vol. 257, p. 87.

    Article  Google Scholar 

  6. Nikolaev, S.A., Zanaveskin, L.N., Smirnov, V.V., Averyanov, V.A., and Zanaveskin, K.L., Russ. Chem. Rev., 2009, vol. 78, p. 231.

    Article  CAS  Google Scholar 

  7. Bond, G.C., Metal-Catalysed Reactions of Hydrocarbons, New York Springer Science + Business Media, 2005.

    Google Scholar 

  8. Borodzinski, A. and Bond, G.C., Catal. Rev., 2006, vol. 48, p. 91.

    Article  CAS  Google Scholar 

  9. Ananikov, V.P., Khemchyan, L.L., Ivanova, Yu.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko, A.V., Nuriev, V.N., Dil’man, A.D., Levin, V.V., Koptyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Likholobov, V.A., et al., Russ. Chem. Rev., 2014, vol. 83, p. 885.

    Article  Google Scholar 

  10. Ananikov, V.P., Khokhlova, E.A., Egorov, M.P., Sakharov, A.M., Zlotin, S.G., Kucherov, A.V., Kustov, L.M., Gening, M.L., and Nifantiev, N.E., Mendeleev Commun., 2015, vol. 25, p. 75.

    Article  CAS  Google Scholar 

  11. Ponec, V. and Bond, G.C., Stud. Surf. Sci. Catal., 1995, vol. 95, p. 1.

    Article  Google Scholar 

  12. Pei, G.X., Yan Liu, X., Wang, A., Lee, A.F., Isaacs, M.A., Li, L., Pan, X., Yang, X., Wang, X., Tai, Z., Wilson, K., and Zhang, T., ACS Catal., 2015, vol. 5, p. 3717.

    Article  CAS  Google Scholar 

  13. Yang, B., Burch, R., Hardacre, C., Headdock, G., and Hu, P., J. Catal., 2013, vol. 305, p. 264.

    Article  CAS  Google Scholar 

  14. Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Hviid Christensen, C., and Nørskov, J. K., Science, 2008, vol. 320, p. 1320.

    Article  CAS  Google Scholar 

  15. Karakhanov, E.A., Maximov, A.L., Zolotukhina, A.V., Yatmanova, N., and Rosenberg, E., Appl. Organomet. Chem., 2015, vol. 29, p. 777.

    Article  CAS  Google Scholar 

  16. Nikolaev, S.A. and Krotova, I.N., Pet. Chem., 2013, vol. 53, no. 6, p. 394.

    Article  CAS  Google Scholar 

  17. Chen, Yu-Z., Zhou, Yu-X., Wang, H., Lu, J., Uchida, T., Xu, Q., Yu, S.-H., and Jiang, H.-L., ACS Catal., 2015, vol. 5, p. 2062.

    Article  CAS  Google Scholar 

  18. Wang, Z., Yang, L., Zhang, R., Li, L., Cheng, Z., and Zhou, Z., Catal. Today, 2016, vol. 264, p. 37.

    Article  CAS  Google Scholar 

  19. Kozitsyna, N.Yu., Nefedov, S.E., Dobrokhotova, Zh.V., Ikorskii, V.N., Stolyarov, I.P., Vargaftik, M.N., and Moiseev, I.I., Nanotechnol. Russ., 2008, vol. 3, nos. 3–4, p. 166.

    Article  Google Scholar 

  20. Mashkovsky, I.S., Baeva, G.N., Stakheev, A.Yu., Vargaftik, M.N., Kozitsyna, N.Yu., and Moiseev, I.I., Mendeleev Commun., 2014, vol. 24, no. 6, p. 355.

    Article  CAS  Google Scholar 

  21. Markov, P.V., Bragina, G.O., Baeva, G.N., Tkachenko, O.P., Mashkovskii, I.S., Yakushev, I.A., Kozitsyna, N.Yu., Vargaftik, M.N., and Stakheev, A.Yu., Kinet. Catal., 2015, vol. 56, p. 591.

    Article  CAS  Google Scholar 

  22. Rassolov, A.V., Markov, P.V., Bragina, G.O., Baeva, G.N., Krivoruchenko, D.S., Mashkovskii, I.S., Yakushev, I.A., Vargaftik, M.N., and Stakheev, A.Yu., Kinet. Catal., 2016, vol. 57, no. 6, p. 859.

    Article  Google Scholar 

  23. Markov, P.V., Bragina, G.O., Baeva, G.N., Tkachenko, O.P., Mashkovskii, I.S., Yakushev, I.A., Vargaftik, M.N., and Stakheev, A.Yu., Kinet. Catal., 2016, vol. 57, no. 5, p. 617.

    Article  CAS  Google Scholar 

  24. Stakheev, A.Yu., Isaeva, V.I., Markov, P.V., Turova, O.V., Mashkovskii, I.S., Kapustin, G.I., Saifutdinov, B.R., and Kustov, L.M., Russ. Chem. Bull., 2015, vol. 64, p. 284.

    Article  CAS  Google Scholar 

  25. MSD ChemStation Data Analysis Software, B.07.03.2129, Santa Clara, Calif. Agilent Technologies, 2015.

  26. NIST14 Mass Spectral Library & Search Software, Ringoes, M.J.,: Scientific Instrument Services, 2014.

  27. Spee, M.P.R., Boersma, J., Meijer, M.D., Slagt, M.Q., van Koten, G., and Geus, J.W., J. Org. Chem., 2001, vol. 66, p. 1647.

    Article  CAS  Google Scholar 

  28. Bond, G.C., Metal-Catalysed Reactions of Hydrocarbons, New York Springer Science + Business Media, 2005.

    Google Scholar 

  29. Markov, P.V., Bragina, G.O., Baeva, G.N., Mashkovskii, I.S., Rassolov, A.V., Yakushev, I.A., Vargaftik, M.N., and Stakheev, A.Yu., Kinet. Catal., 2016, vol. 57, no. 5, p. 629.

    Google Scholar 

  30. Markov, P.V., Bragina, G.O., Rassolov, A.V., Mashkovsky, I.S., Baeva, G.N., Tkachenko, O.P., Yakushev, I.A., Vargaftik, M.N., Stakheev, A.Yu., Mendeleev Commun. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Stakheev.

Additional information

Original Russian Text © A.V. Rassolov, P.V. Markov, G.O. Bragina, G.N. Baeva, I.S. Mashkovskii, I.A. Yakushev, M.N. Vargaftik, A.Yu. Stakheev, 2016, published in Kinetika i Kataliz, 2016, Vol. 57, No. 6, pp. 857–864.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rassolov, A.V., Markov, P.V., Bragina, G.O. et al. Catalytic properties of nanostructured Pd–Ag catalysts in the liquid-phase hydrogenation of terminal and internal alkynes. Kinet Catal 57, 853–858 (2016). https://doi.org/10.1134/S0023158416060124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158416060124

Keywords

Navigation