Skip to main content
Log in

Thermal stability of surface nitrogen–oxygen complexes and phase transitions in ZrO2

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The IR spectra of surface compounds observed in the course of the temperature-programmed desorption (TPD) of NO x and the TPD spectra are compared. The high-temperature peaks of desorption are related to the decomposition of surface nitrites and nitrates. The low-temperature peaks of NO x desorption with maximums below 140°C are caused by the decomposition of surface nitrosyls. On the heating of surface nitrosyls, the following two reaction paths are possible: desorption at low temperatures and conversion into nitrates. The shape of the TPD spectra of NO depends on the phase composition of test samples. The transition of a tetragonal phase into a monoclinic one occurred upon the surface dehydroxylation of polycrystalline particles with the formation of particles with a tetragonal nucleus and a monoclinic crust. This transition is reversible. The cooling of a sample in a moist atmosphere leads to the transition of the monoclinic crust to the tetragonal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bethke, K.A., Kung, M.C., Yang, B., Shah, M., Alt, D., Li, C., and Kung, H.H., Catal. Today, 1995, vol. 26, p. 169.

    Article  CAS  Google Scholar 

  2. Lamacz, A., Krzton, A., and Djéga-Mariadassou, G., Appl. Catal., B, 2013, vols. 142–143, p.268.

    Article  Google Scholar 

  3. Pietrogiacomi, D., Sannino, D., Tuti, S., Ciambelli, P., Indovina, V., Occhiuzzi, M., and Pepe, F., Appl. Catal., B, 1999, vol. 21, p. 141.

    Article  CAS  Google Scholar 

  4. Matyshak, V.A., Il’ichev, A.N., Sadykov, V.A., Sil’chenkova, O.M., and Korchak, V.N., Kinet. Catal., 2015, vol. 56, no. 2, p. 226.

    Article  CAS  Google Scholar 

  5. Pozdnyakov, D.V. and Filimonov, V.N., Kinet. Katal., 1973, vol. 14, p. 760.

    CAS  Google Scholar 

  6. Delahay, G., Coq, B., Ensuque, E., Figueras, F., Saussey, J., and Poignant, F., Langmuir, 1997, vol. 13, p. 5588.

    Article  CAS  Google Scholar 

  7. Wagif, J., Bachelier, M., Saur, O., and Lavalley, J.C., J. Mol. Catal., 1992, vol. 72, p. 127.

    Article  Google Scholar 

  8. Miller, T.M. and Grassian, V.H., Catal. Lett., 1997, vol. 46, p. 213.

    Article  CAS  Google Scholar 

  9. Hertl, W., Langmuir, 1989, vol. 5, p. 96.

    Article  CAS  Google Scholar 

  10. Morterra, C., Bolis, V., Fubini, B., and Orio, L., Surf. Sci., 1991, vols. 251–252, p.540.

    Article  Google Scholar 

  11. Kondo, J., Abe, K., Sakata, Y., Domen, K., Maruya, K., and Onishi, T., J. Chem. Soc., Faraday Trans., 1988, vol. 84, p. 511.

    Article  CAS  Google Scholar 

  12. Guglielminotti, E., Langmuir, 1990, vol. 6, p. 1455.

    Article  CAS  Google Scholar 

  13. Bensitel, M., Saur, O., Lavalley, J.C., and Mabilon, G., Mater. Chem. Phys., 1987, vol. 17, p. 249.

    Article  CAS  Google Scholar 

  14. Hadjiivanov, K. and Lavalley, J.-C., Catal. Commun., 2001, vol. 2, p. 129.

    Article  CAS  Google Scholar 

  15. Matyshak, V.A. and Krylov, O.V., Catal. Today, 1995, vol. 25, p. 1.

    Article  CAS  Google Scholar 

  16. Hadgiivanov, K., Catal. Lett., 2000, vol. 68, p. 157.

    Article  Google Scholar 

  17. Hadjiivanov, K.I., Catal. Rev. Sci. Eng., 2000, vol. 42, nos. 1–2, p.71.

    Article  CAS  Google Scholar 

  18. Beutel, T., Sarkany, J., and Lei, G.-D., J. Phys. Chem., 1996, vol. 100, p. 845.

    Article  CAS  Google Scholar 

  19. Davydov, A.A., Molecular Spectroscopy of Oxide Catalyst Surfaces, New York: Wiley, 2003.

    Book  Google Scholar 

  20. Yu, Y., He, H., Feng, Q., Gao, H., and Yang, X., Appl. Catal. B, 2004, vol. 49, p. 159.

    Article  CAS  Google Scholar 

  21. Eränen, K., Klingstedt, F., Arve, K., Lindfors, L., and Murzin, D.Y., J. Catal., 2004, vol. 227, p. 328.

    Article  Google Scholar 

  22. Hadjiivanov, K.I. and Vayssilov, G.N., Adv. Catal., 2002, vol. 47, p. 307.

    CAS  Google Scholar 

  23. Martinez-Arias, A., Soria, J., Conesa, J.C., Seoane, X.L., Arcoya, A., and Cataluna, R., J. Chem. Soc., Faraday Trans., 1995, vol. 91, p. 1679.

    Article  CAS  Google Scholar 

  24. Hadjiivanov, K.I., Avreyska, V., Klissurski, D., and Marinova, T., Langmuir, 2002, vol. 18, p. 1619.

    Article  CAS  Google Scholar 

  25. Guglielminotti, E. and Boccuzzi, F., Appl. Catal. B, 1996, vol. 8, p. 375.

    CAS  Google Scholar 

  26. Miyata, H., Konishi, S., Ohno, T., and Hatayama, F., J. Chem. Soc. Faraday Trans., 1995, vol. 91, no. 10, p. 1557.

    Article  CAS  Google Scholar 

  27. Wu, N.L., Wu, T.F., and Rusakova, I.A., J. Mater. Res., 2001, vol. 16, p. 666.

    Article  CAS  Google Scholar 

  28. Torres-García, E., Peláiz-Barranco, A., VázquezRamos, C., and Fuentes, G.A., J. Mater. Res., 2001, vol. 16, p. 2209.

    Article  Google Scholar 

  29. Garvie, R.C., J. Phys. Chem., 1965, vol. 69, p. 1238.

    Article  CAS  Google Scholar 

  30. Garvie, R.C., J. Phys. Chem., 1978, vol. 82, p. 218.

    Article  CAS  Google Scholar 

  31. Bokhimi, X., Morales, A., and Novaro, O., J. Solid State Chem., 1998, vol. 135, p. 28.

    Article  CAS  Google Scholar 

  32. Pacheco, G. and Fripiat, J.J., J. Phys. Chem. B, 2000, vol. 104, p. 11906.

    Article  CAS  Google Scholar 

  33. Pârvulescu, V.I., Bönnemann, H., Pârvulescu, V., Endrushat, U., Rufinska, A., Lehmann, Ch.W., Teshe, B., and Poncelet, G., Appl. Catal., A, 2001, vol. 214, p. 273.

    Article  Google Scholar 

  34. Pârvulescu, V.I., Pârvulescu, V., Endruschat, U., Lehmann, Ch.W., Grange, P, Poncelet, G., and Bönnemann, H., Microporous Mesoporous Mater., 2001, vols. 44–45, p.221.

    Article  Google Scholar 

  35. Mitsuchashi, T., Ichibara, M., and Tatsuke, U., J. Am.Ceram.Soc., 1974, vol. 57, p. 97.

    Article  Google Scholar 

  36. Li, M., Feng, Z., Xiong, G., Ying, P., Xin, Q., and Li, C., J. Phys. Chem. B, 2001, vol. 105, p. 8107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Matyshak.

Additional information

Original Russian Text © V.A. Matyshak, O.N. Sil’chenkova, V.A. Sadykov, V.N. Korchak, 2016, published in Kinetika i Kataliz, 2016, Vol. 57, No. 2, pp. 228–236.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matyshak, V.A., Sil’chenkova, O.N., Sadykov, V.A. et al. Thermal stability of surface nitrogen–oxygen complexes and phase transitions in ZrO2 . Kinet Catal 57, 234–242 (2016). https://doi.org/10.1134/S002315841602004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841602004X

Keywords

Navigation