Skip to main content
Log in

Synergetic effect in PdAu/CeO2 catalysts for the low-temperature oxidation of CO

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Gold-palladium catalysts supported on cerium oxide were synthesized with the double complex salts. X-ray photoelectron spectroscopy (XPS) and other physicochemical methods (TEM, TPR) were used to demonstrate that synthesis of highly active palladium catalysts requires the oxidative treatment stimulating the formation of a catalytically active surface solid solution Pd x Ce1−x O2, which is responsible for the lowtemperature activity (LTA) in the reaction CO + O2. In the case of gold catalysts, active sites for the lowtemperature oxidation of CO are represented by gold nanoparticles and its cationic interface species. Simultaneous deposition of two metals increases the catalyst LTA due to interaction of both gold and palladium with the support surface to form a Pd1−x CexO2 solid solution and cationic interface species of palladium and gold on the boundary of Pd-Au alloy particles anchored on the solid solution surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cargnello, N. L. Wieder, T. Montini, et al., J. Am. Chem. Soc., 132, No. 4, 1402–1409 (2010).

    Article  CAS  Google Scholar 

  2. G. Glaspell, H. M. A. Hassan, A. Elzatahry, et al., Top. Catal., 47, Nos. 1/2, 22–31 (2008).

    Article  CAS  Google Scholar 

  3. F. Liang, H. Zhu, Z. Qin, et al., Catal. Lett., 126, Nos. 3/4, 353–360 (2008).

    Article  CAS  Google Scholar 

  4. J. Y. Luo, M. Meng, X., et al., J. Catal., 254, No. 2, 310–324 (2008).

    Article  CAS  Google Scholar 

  5. J. Y. Luo, M. Meng, J. S. Yao, et al., Appl. Catal. B: Environ., 87, Nos. 1/2, 92–103 (2009).

    Article  CAS  Google Scholar 

  6. Y. Bi, L. Chen, and G. Lu, J. Mol. Catal. A: Chem., 266, Nos. 1/2, 173–179 (2007).

    Article  CAS  Google Scholar 

  7. B. L. Moroz, P. A. Pyrjaev, V. I. Zaikovskii, and V. I. Bukhtiyarov, Catal. Today, 144, Nos. 3/4, 292–305 (2009).

    Article  CAS  Google Scholar 

  8. F. Niu, D. Zhang, L. Shi, et al., Mater. Lett., 63, Nos. 24/25, 2132–2135 (2009).

    Article  CAS  Google Scholar 

  9. J. M. C. Soares, M. Hall, M. Cristofolini, and M. Bowker, Catal. Lett., 109, Nos. 1/2, 103–108 (2006).

    Article  CAS  Google Scholar 

  10. L. F. Liotta, G. Di Carlo, A. Longo, et al., Catal. Today, 139, No. 3, 174–179 (2008).

    Article  CAS  Google Scholar 

  11. K. Qian, S. Lv, X. Xiao, et al., J. Mol. Catal. A: Chem., 306, Nos. 1/2, 40–47 (2009).

    Article  CAS  Google Scholar 

  12. A. I. Boronin, E. M. Slavinskaya, I. G. Danilova, et al., Catal. Today, 144, Nos. 3/4, 201–211 (2009).

    Article  CAS  Google Scholar 

  13. T. Diemant, J. Bansmann, and R. J. Behm, Vacuum, 84, No. 1, 193–196 (2009).

    Article  CAS  Google Scholar 

  14. Z. Suo, C. Ma, M. Jin, et al., Catal. Commun., 9, No. 13, 2187–2190 (2008).

    Article  CAS  Google Scholar 

  15. G. J. Hutchings, Dalton Trans., 41, 5523–5536 (2008).

    Article  Google Scholar 

  16. K. R. Priolkar, P. Bera, P. R. Sarode, et al., Chem. Mater., 14, No. 5, 2120–2128 (2002).

    Article  CAS  Google Scholar 

  17. S. Colussi, A. Gayen, M. F. Camellone, et al., Angew. Chem., Int. Ed., 48, No. 45, 8481–8484 (2009).

    Article  CAS  Google Scholar 

  18. W. B. Li, Y. Murakami, M. Orihara, et al., Phys. Scr. T, 115, 749–752 (2005).

    Article  Google Scholar 

  19. F. Le Normand, J. Barrault, R. Breault, et al., J. Phys. Chem., 95, No. 1, 257–269 (1991).

    Article  Google Scholar 

  20. J. P. Chen and L. L. Lim, Chemosphere, 49, 363 (2002).

    Article  CAS  Google Scholar 

  21. L. S. Kibis, A. I. Stadnichenko, E. M. Pajetnov, et al., Appl. Surf. Sci., 257, 404 (2010).

    Article  CAS  Google Scholar 

  22. O. V. Magaev, A. S. Knyazev, O. V. Vodyankina, et al., Appl. Catal. A: Gen., 344, 142 (2008).

    Article  CAS  Google Scholar 

  23. E. M. Slavinskaya, S. A. Veniaminov, P. Notté, et al., J. Catal., 222, 129 (2004).

    Article  CAS  Google Scholar 

  24. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, Netherlands (2006).

    Google Scholar 

  25. A. S. Ivanova, E. M. Slavinskaya, R. V. Gulyaev, et al., Appl. Catal. B: Environ., 97, Nos. 1/2, 57–71 (2010).

    Article  CAS  Google Scholar 

  26. K. Sun, J. Liu, N. Nag, and N. D. Browning, Catal. Lett., 84, No. 3, 193–199 (2002).

    Article  CAS  Google Scholar 

  27. H. Zhu, Z. Qin, W. Shan, et al., J. Catal., 225, No. 2, 267–277 (2004).

    Article  CAS  Google Scholar 

  28. I. G. Danilova, E. M. Slavinskaya, V. I. Zaikovskii, et al., Kinet. Catal., 51, No. 1, 153–158 (2010).

    Article  Google Scholar 

  29. H. W. Jen, G. W. Graham, W. Chun, et al., Catal. Today, 50, No. 2, 309–328 (1999).

    Article  CAS  Google Scholar 

  30. H. Okamoto and T. Massalski, J. Phase Equilib., 6, No. 3, 229–235 (1985).

    CAS  Google Scholar 

  31. Y. C. Venudhar, L. Iyengar, and K. V. K. Rao, J. Less Common Metals, 58, No. 2, 55–60 (1978).

    Article  Google Scholar 

  32. G. B. Hoflund, H. A. E. Hagelin, J. F. Weaver, and G. N. Salaita, Appl. Surf. Sci., 205, Nos. 1–4, 102–112 (2003).

    Article  CAS  Google Scholar 

  33. S. H. Oh and G. B. Hoflund, J. Catal., 245, No. 1, 35–44 (2007).

    Article  CAS  Google Scholar 

  34. T. Pillo, R. Zimmermann, P. Steiner, and S. Hüfner, J. Phys.: Condens. Matter., 9, No. 19, 3987–3999 (1997).

    Article  CAS  Google Scholar 

  35. M. G. Mason, Phys. Rev. B, 27, No. 2, 748–762 (1983).

    Article  CAS  Google Scholar 

  36. G. K. Wertheim, Zeitschrift für Physik D Atoms, Molecules and Clusters, 12, Nos. 1–4, 319–326 (1989).

    Article  CAS  Google Scholar 

  37. A. I. Boronin, Condensed Media and Interfaces, 2, 4 (2000).

    Google Scholar 

  38. T. Wu, W. E. Kaden, W. A. Kunkel, and S. L. Anderson, Surf. Sci., 603, 2764 (2009).

    Article  CAS  Google Scholar 

  39. T. Skála, F. Šutara, M. Škoda, et al., J. Phys.: Condens. Matter., 21, 5 (2009).

    Article  Google Scholar 

  40. V. I. Nefedov and V. T. Cherepin, Physical Methods for Solid Surface Study [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  41. P. Bera and M. S. Hegde, Catal. Lett., 79, 75 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Boronin.

Additional information

Original Russian Text Copyright © 2011 by R. V. Gulyaev, L. S. Kibis, O. A. Stonkus, A. V. Zadesenets, P. E. Plyusnin, Yu. V. Shubin, S. V. Korenev, A. S. Ivanova, E. M. Slavinskaya, V. I. Zaikovskii, I. G. Danilova, A. I. Boronin, and V. A. Sobyanin

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 52, Supplement, pp. S126–S140, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulyaev, R.V., Kibis, L.S., Stonkus, O.A. et al. Synergetic effect in PdAu/CeO2 catalysts for the low-temperature oxidation of CO. J Struct Chem 52 (Suppl 1), 123–136 (2011). https://doi.org/10.1134/S0022476611070171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476611070171

Keywords

Navigation