Skip to main content
Log in

Inversion Correction Method for NaI(Tl) Gamma Spectra on Arbitrary Energy Scale Based on the Function Theory of Random Variables

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ambient temperature variation always causes serious spectral drifts in NaI(Tl) gamma spectrum due to the temperature sensitivity of NaI(Tl) spectrometer performance. It is crucial to eliminate spectral drifts for the applications of NaI(Tl) gamma spectroscopy. In this paper, an inversion correction algorithm of gamma spectrum based on the function theory of random variables was proposed. By introducing the energy scaling factor, the theoretical deposition energy spectrum on any energy scale in detector was obtained. To validate the algorithm, the actual measured 226Ra NaI(Tl) gamma spectra with serious spectral drifts were corrected on different energy scales. The results show that the spectral drifts and spectral intensity variation were effectively eliminated on each energy scale. The maximum relative drift of peak position, the maximum relative variation of peak height and that of FWHM were 36.34, 20.92, and 19.19% before correction, respectively, and after correction, they became 0.12, 2.58, and 2.62%, respectively. These results demonstrate the feasibility and practicality of the developed algorithm in this work for applications in enhancing the confidence degree of identifying NaI(Tl) gamma fingerprints of nuclear materials and the analytical accuracy of NaI(Tl) gamma spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Belousov, M.P., Gromyko, M.V., and Ignatyev, O.V., Instrum. Exp. Tech., 2017, vol. 60, no. 1, p. 1. https://doi.org/10.1134/S0020441217010171

    Article  Google Scholar 

  2. Medici, S., Carbonez, P., Damet, J., Bochud, F., and Pitzschke, A., Radiat. Meas., 2020, vol. 136, p. 106426. https://doi.org/10.1016/j.radmeas.2020.106426

    Article  Google Scholar 

  3. Bu, M., Murray, A.S., Kook, M., Helsted, L.M., Buylaert, J.-P., and Thomsen, K.J., Radiat. Meas., 2018, vol. 120, p. 253. https://doi.org/10.1016/j.radmeas.2018.07.003

    Article  Google Scholar 

  4. Likiy, O.I., Ampilogov, N.V., Astapov, I.I., Barbashina, N.S., Kamlev, N.N., Kompaniets, K.G., Kuzmichev, L.A., Kutovoi, V.Yu., Chiavassa, A., Petru-khin, A.A., Haungs, A., Khokhlov, S.S., Shulzhenko, I.A., Shutenko, V.V., and Yashin, I.I., Instrum. Exp. Tech., 2016, vol. 59, no. 6, p. 781. https://doi.org/10.1134/S0020441216050110

    Article  Google Scholar 

  5. Guoqiang Zeng, Chengjun Tan, Liangquan Ge, Qingxian Zhang, and Yi Gu, Appl. Radiat. Isot., 2014, vol. 85, p. 70. https://doi.org/10.1016/j.apradiso.2013.12.002

    Article  Google Scholar 

  6. Casanovas, R., Morant, J.J., and Salvado, M., Radiat. Meas., 2012, vol. 47, p. 588. https://doi.org/10.1016/j.radmeas.2012.06.001

    Article  Google Scholar 

  7. Wang Chongjie, Bao Dongmin, Cheng Song, and Zhang Ailian, Acta Phys. Sin., 2008, vol. 57, no. 9, p. 5361.

    Article  Google Scholar 

  8. Wang Chong-Jie, Liu Jing-Nan, Zhou Ying-Ying, Wu Yi, and Zhao Si-Wen, Nucl. Electron. Detect. Technol., 2020, vol. 40, no. 6, p. 932.

    Google Scholar 

  9. Olmos, P., Diaz, J.C., Perez, J.M., Aguayo, P., Gomez, P., and Rodellar, V., IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 3, p. 637.

    Article  ADS  Google Scholar 

  10. Loska, L., Appl. Radiat. Isot., 1995, vol. 46, no. 9, p. 949.

    Article  Google Scholar 

  11. Shepard, R., Wawrowski, S., Charland, M., Roberts, H., and Moslinger, M., IEEE Trans. Nucl. Sci., 1997, vol. 44, no. 3, p. 568.

    Article  ADS  Google Scholar 

  12. Saucke, K., Pausch, G., Stein, J., Ortlepp, H.-G., and Schotanus, P., IEEE Trans. Nucl. Sci., 2005, vol. 52, no. 6, p. 3160.

    Article  ADS  Google Scholar 

  13. Idanakiev, K.D., Alexandrov, B.S., Littlewood, P.B., and Browne, M.C., Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 607, p. 432. https://doi.org/10.1016/j.nima.2009.02.019

    Article  Google Scholar 

  14. Pratip Mitran, Arup Singha Roy, Amit K. Verma, Amar D. Pant, Prakasha, M.S., Anilkumar, S., and Vinod Kumar, A., Appl. Radiat. Isot., 2016, vol. 107, p. 133. https://doi.org/10.1016/j.apradiso.2015.10.002

    Article  Google Scholar 

  15. Chongjie Wang, Qiuyan Zhang, Yue Sun, Jingnan Liu, Yingying Zhou, and Min Zhang, Appl. Radiat. Isot., 2021, vol. 172, p. 109671. https://doi.org/10.1016/j.apradiso.2021.109671

    Article  Google Scholar 

  16. Luo Pengfei and Zhang Wenming, Analysis and Processing of Random Signals, Beijing: Tsinghua Univ. Press, 2006, p. 4.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Liaoning Revitalization Talents Program (XLYC1807170) and Liaoning BaiQianWan Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Miao, Y., Wang, C. et al. Inversion Correction Method for NaI(Tl) Gamma Spectra on Arbitrary Energy Scale Based on the Function Theory of Random Variables. Instrum Exp Tech 65, 362–369 (2022). https://doi.org/10.1134/S0020441222010158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222010158

Navigation