Skip to main content
Log in

An Automated System for Measuring the Current Density of a Pulse–Periodic Electron Beam with a Large Cross Section

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—In an electron source with a mesh plasma cathode on the basis of a low-pressure arc discharge, studies of the spatiotemporal stability of a pulse–periodic beam with a large cross section (750 × 150 mm2), which was extracted into the atmosphere through an output foil window, were performed. The automated system that was used in the studies allowed real-time measurements with the ability to visualize the data on a computer. This system provides an accuracy of measurements of no worse than ±2%; it differs from the known analogues in the compactness, reliability, and simplicity of its design and allows studies of the current-density distribution over the beam cross section in a wide range of beam parameters, such as the beam energy, beam current, and beam-current pulse duration. A satisfactory coincidence of the previously obtained data and the present experimental data is shown with the possibility of substantially increasing the accuracy of setting up a scientific experiment and, consequently, the speed of debugging and the reproducibility of the technological process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bugaev, S.P., Kreindel’, Yu.E., and Shchanin, P.M., Elektronnye puchki bol’shogo secheniya (Electron Beams with Large Cross-Section), Moscow: Energoatomizdat, 1984.

  2. Abdullin, E.N. and Chmukh, V.N., Khim. Vys. Energ., 1979, vol. 13, no. 2, p. 181.

    Google Scholar 

  3. Henze, M., Harremoes, P., Jansen, J.C., and Arvin, E., Wastewater Treatment. Biological and Chemical Processes, Berlin, Heidelberg: Springer, 2002.

    Google Scholar 

  4. Pushkarev, A.I., Remnev, G.E., Vlasov, V.A., Sosnovskii, S.A., and Ezhov, V.V., Izv. Tomsk. Politekh. Univ., 2004, vol. 307, no. 6, p. 59.

    Google Scholar 

  5. Rostov, V.V., Alekseenko, P.I., Vykhodtsev, P.V., Shteinle, A.V., Mazin, V.I., Krasnozhenov, E.P., Mushtovatova, L.S., Solodkova, T.V., Postnikov, P.S., Kutonova, K.V., and Shteinle, L.A., Sib. Med. Zh., 2012, vol. 27, no. 1, p. 141.

    Google Scholar 

  6. Abroyan, M.A., Akulov, V.V., Bogomazov, P.M., Kosogorov, S.L., Manukyan, G.Sh., Motovilov, S.A., Shvedyuk, V.Ya., and Shapiro, V.B., Kvantovaya Elektron., 1996, vol. 23, no. 8, p. 751.

    Google Scholar 

  7. Sokovnin, S.Yu., Nanosekundnye uskoriteli elektronov i radiatsionnye tekhnologii na ikh osnove (Nanosecond Electron Accelerators and Radiation Technologies on Their Base), Yekaterinburg: Ural Branch Russ. Acad. Sci., 2007.

  8. Ershov, B.G., Herald Russ. Acad. Sci., 2013, vol. 83, no. 5, p. 437. doi 10.1134/S1019331613090050

    Article  Google Scholar 

  9. Abroyan, M.A., Kosogorov, S.L., Nabokova, I.V., Uspenskii, N.A., Chumichev, V.A., Shapiro, V.B., and Shvedyuk, V.Ya., Instrum. Exp. Tech., 2007, vol. 50, no. 4, p. 530. doi 10.1134/S0020441207040173

    Article  Google Scholar 

  10. Kondrat’ev, E.A., Pis’mennyi, V.D., Rakhimov, A.G., and Saenko, V.B., Materialy 3-ego Vsesoyuznogo soveshchaniya “Primenenie uskoritelei zaryazhennykh chastits v narodnom khozyaistve” (Proc. 3rd All-Union Conf. “Application of Charge Particle Accelerators for National Economy”), Leningrad, 1979, vol. 3, p. 203.

  11. Koval, N.N. and Ovsyannikov, V.I., Materialy regional’noi nauchno-prakticheskoi konferentsii “Molodye uchenye i spetsialisty – narodnomu khozyaistvu” (Proc. Regional Scientific and Practical Conf. “Young Scientists and Specialists for National Economy”), Tomsk, 1977, p. 32.

  12. Kochenkov, V.A., Mikhailov, V.I., Naek, S.V., Porkhun, A.I., Skorobogat, S.L., and Slivkov, I.N., Prib. Tekh. Eksp., 1977, no. 2, p. 139.

  13. Ponomarev, A.V., Pedos, M.S., Mamontov, U.I., Gusev, A.I., and Shcherbinin, S.V., Instrum. Exp. Tech., 2015, vol. 58, no. 4, p. 499. doi 10.1134/ S0020441215030252

    Article  Google Scholar 

  14. Vorobyov, M.S., Koval, N.N., and Sulakshin, S.A., Instrum. Exp. Tech., 2015, vol. 58, no. 5, p. 687. doi 10.1134/S0020441215040132

    Article  Google Scholar 

  15. Gielkens, S.W.A., Peters, P.J.M., Witteman, W.J., Borovikov, P.V., Stepanov, A.V., Tskhai, V.N., Zavjalov, M.A., Gushenets, V.I., and Koval, N.N., Rev. Sci. Instrum., 1996, vol. 67, no. 7, p. 2449. doi 10.1063/1.1147195

    Article  ADS  Google Scholar 

  16. Schanin, P.M., Koval, N.N., Tolkachev, V.S., and Gushenets, V.I., Russ. Phys. J., 2000, vol. 43, no. 5, p. 427.

    Article  Google Scholar 

  17. Koval, N.N., Kreindel, Yu.E., Tolkachev, V.S., and Schanin, P.M., IEEE Trans. Electr. Insul., 1985, vol. EI-20, no. 4, p. 735. doi 10.1109/TEI.1985.348898

    Article  Google Scholar 

  18. Vorobyov, M.S. and Koval, N.N., Tech. Phys. Lett., 2016, vol. 42, no. 6, p. 574.

    Article  ADS  Google Scholar 

  19. Vorobyov, M.S., Koval, N.N., Sulakshin, S.A., and Shugurov, V.V., J. Phys.: Conf. Ser., 2015, vol. 652, p. 012048. doi 10.1088/1742-6596/652/1/012048

    Google Scholar 

  20. Archard, G.D., J. Appl. Phys., 1961, vol. 32, no. 8, p. 1505. doi 10.1063/1.1728385

    Article  ADS  Google Scholar 

  21. Seltser, S.M. and Berger, M.J., Nucl. Instrum. Methods, 1974, vol. 119, p. 157. doi 10.1016/0029-554X(74) 90747-2

    Article  ADS  Google Scholar 

  22. Grigor’ev, Yu.V. and Shanturin, L.P., Prib. Tekh. Eksp., 1979, no. 4, p. 194.

  23. Kozyrev, A.V., Kozhevnikov, V.Yu., Vorobyov, M.S., Baksht, E.Kh., Burachenko, A.G., Koval, N.N., and Tarasenko, V.F., Laser Part. Beams, 2015, vol. 33, no. 02, p. 183. doi 10.1017/S0263034615000324

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Vorobyov.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobyov, M.S., Kovalsky, S.S. & Koval, N.N. An Automated System for Measuring the Current Density of a Pulse–Periodic Electron Beam with a Large Cross Section. Instrum Exp Tech 61, 849–855 (2018). https://doi.org/10.1134/S0020441218050251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441218050251

Keywords

Navigation