Skip to main content
Log in

Electrical Properties of Beryllium-Doped Gd2Zr2O7

  • Published:
Inorganic Materials Aims and scope

Abstract

Dense Gd2Zr2O7-based ceramics with the composition Gd2Zr1.9Be0.1O6.9, containing heterovalently substituted beryllium on the zirconium site, have been prepared for the first time via mechanical activation of an oxide mixture, followed by annealing of green compacts at 1500°C. The use of mechanical activation has been shown to enable the preparation of dense ceramics (relative density of 88%) by annealing for 5 min and gas-tight ceramics (relative density of 97.3%) by annealing for 4 h. Gd2Zr1.9Be0.1O6.9 has a pure oxygen ion conductivity of 4.0 × 10–3 S/cm at 800°C. The main advantage of partial beryllium substitution on the zirconium site in Gd2Zr2O7 is the formation of a material having negligible electron and hole conductivities in wide ranges of oxygen partial pressures and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Zhang, J., Lenser, C., Menzler, N.H., and Guillon, O., Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500°C, Solid State Ionics, 2020, vol. 344, paper 115138. https://doi.org/10.1016/j.ssi.2019.115138

  2. Yeh, T.-H., Hsu, W.-C., and Chou, C.-C., Mechanical and electrical properties of ZrO2(3Y) Doped with RENbO4 (RE = Yb, Er, Y, Dy, YNd, Sm, Nd), J. Phys. IV, 2005, vol. 128, pp. 213–219.

    CAS  Google Scholar 

  3. Yoon, S., Noh, T., Kim, W., Choi, J., and Lee, H., Structural parameters and oxygen-ion conductivity of Y2O3–ZrO2 and MgO–ZrO2 at high temperature, Ceram. Int., 2013, vol. 39, pp. 9247–9251. https://doi.org/10.1016/j.ceramint.2013.05.032

    Article  CAS  Google Scholar 

  4. Xia, C. and Liu, M., Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs, Solid State Ionics, 2002, vol. 152, pp. 423–430.

    Article  Google Scholar 

  5. Li, B., Wei, X., and Pan, W., Improved electrical conductivity of Ce0.9Gd0.1O1.95 and Ce0.9Sm0.1O1.95 by co-doping, Int. J. Hydrogen Energy, 2020, vol. 35, pp. 3018–3022. https://doi.org/10.1016/j.ijhydene.2009.07.002

    Article  CAS  Google Scholar 

  6. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., and Barnett, S.A., A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 2016, vol. 9, no. 5, pp. 1602–1644. https://doi.org/10.1039/C5EE03858H

    Article  CAS  Google Scholar 

  7. Lee, D.S., Kim, W.S., Choi, S.H., Kim, J., Lee, H.W., and Lee, J.H., Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs, Solid State Ionics, 2005, vol. 176, nos. 1–2, pp. 33–39.

    Article  CAS  Google Scholar 

  8. Yamamura, H., Nishino, H., Kakinuma, K., and Nomura, K., Electrical conductivity anomaly around fluorite–pyrochlore phase boundary, Solid State Ionics, 2003, vol. 158, nos. 3–4, pp. 359–365.

    Article  CAS  Google Scholar 

  9. Nishino, H., Yamamura, H., Arai, K., Kakinuma, K., and Nomura, K., Effect of cation radius ratio and unit cell free volume on oxide-ion conductivity in oxide systems with pyrochlore-type composition, Ceram. Soc. Jpn., 2004, vol. 112, pp. 541–546.

    Article  CAS  Google Scholar 

  10. Shlyakhtina, A.V. and Pigalskiy, K.S., Tolerance factor as the basic criterion in searching for promising oxygen-ion and proton conductors among Ln2 – xDxM2O7 – δ (Ln = La–Lu; M= Sn, Ti, Zr, Hf; D = Sr, Ca, Mg; x = 0, 0.1) 3+/4+ pyrochlores, Mater. Res. Bull., 2019, vol. 116, pp. 72–78. https://doi.org/10.1016/j.materresbull.2019.04.021

    Article  CAS  Google Scholar 

  11. Shlyakhtina, A.V. and Shcherbakova, L.G., New solid electrolytes of the pyrochlore family, Russ. J. Electrochem., 2012, no. 1, pp. 1–25. https://doi.org/10.1134/S1023193512010144

  12. Liu, Z.G., Ouyang, J.H., Zhou, Y., and Xia, X.L., Effect of Sm substitution for Gd on the electrical conductivity of fluorite-type Gd2Zr2O7, J. Power Sources, 2008, vol. 185, no. 2, pp. 876–880.

    Article  CAS  Google Scholar 

  13. Moreno, K.J., Fuentes, A.F., Garcia-Barriocanal, J., Leon, C., and Santamaria, J., Mechanochemical synthesis and ionic conductivity in the Gd2(Sn1 – yZry)2O7 (0 ≤ y ≤ 1) solid solution, J. Solid State Chem., 2006, vol. 179, no. 1, pp. 323–330.

    Article  CAS  Google Scholar 

  14. Xia, X.L., Gao, S., Liu, Z.G., and Ouyang, J.H., The influence of pentavalent Nb substitution for Zr on electrical property of oxide-ion conductor Gd2Zr2O7, Electrochim. Acta, 2010, vol. 55, no. 19, pp. 5301–5306. https://doi.org/10.1016/j.electacta.2010.04.086

    Article  CAS  Google Scholar 

  15. Anokhina, I.A., Animitsa, I.E., Voronin, V.I., Vykhodets, V.B., Molchanova, N.G., Vylkov, A.I., Dedyukhin, A.E., and Zaikov, Y.P., The structure and electrical properties of lithium doped pyrochlore Gd2Zr2O7, Ceram. Int., 2021, vol. 47, pp. 1949–1961. https://doi.org/10.1016/j.ceramint.2020.09.025

    Article  CAS  Google Scholar 

  16. Moreno, K.J., Guevara-Liceaga, M.A., Fuentes, A.F., García-Barriocanal, J., León, C., and Santamaría, J., Room-temperature synthesis and conductivity of the pyrochlore type Dy2(Ti1 − yZry)2O7 (0 ≤ y ≤ 1) solid solution, J. Solid State Chem., 2006, vol. 179, no. 3, pp. 928–934.

    Article  CAS  Google Scholar 

  17. Shlyakhtina, A.V., Abrantes, J.C.C., Gomes, E., Lyskov, N.V., Konysheva, E.Yu., Kharitonova, E.P., Karyagina, O.K., Kolbanev, I.V., and Shcherbakova, L.G., Evolution of oxygen-ion and proton conductivity in Ca doped Ln2Zr2O7 (Ln = Sm, Gd) zirconates, located near pyrochlore–fluorite phase boundary, Materials, 2019, vol. 12, no. 15, paper 2452. https://doi.org/10.3390/ma12152452

  18. Eurenius, K.E.J., Ahlberg, E., and Knee, C.S., Role of B-site ion on proton conduction in acceptor-doped Sm2B2O7 – δ (B = Ti, Sn, Zr and Ce) pyrochlores and C-type compounds, J. Chem. Soc., Dalton Trans., 2011, vol. 40, pp. 3946–3954.

    Article  CAS  Google Scholar 

  19. Sadykov, V., Shlyakhtina, A., Lyskov, N., Sadovskaya, E., Cherepanova, S., Eremeev, N., and Kharitonova, E., Oxygen diffusion in Mg-doped Sm and Gd zirconates with pyrochlore structure, Ionics, 2020, vol. 26, pp. 4621–4633. https://doi.org/10.1007/s11581-020-03614-5

    Article  CAS  Google Scholar 

  20. Gorelov, V.P., Balakireva, V.B., and Vorotnikov, V.A., Proton conductivity of acceptor-doped Sr2CeO4, Inorg. Mater., 2019, vol. 55, no. 11, pp. 1167–1171. https://doi.org/10.1134/S0020168519110050

    Article  CAS  Google Scholar 

  21. Tarasova, N.A., Galisheva, A.O., and Animitsa, I.E., Electrical conductivity of BaLaIn0.9M0.1O3.9 (M = Mg, Zn)—new complex oxides with the Ruddlesden–Popper structure, Inorg. Mater., 2021, vol. 57, no. 11, pp. 60–67. https://doi.org/10.1134/S0020168521010155

    Article  CAS  Google Scholar 

  22. Agarkova, E.A., Borik, M.A., Kulebyakin, A.V., Kuritsina, I.E., Lomonova, E.E., Milovich, F.O., Muzina, V.A., Osiko, V.V., and Tabachkova, N.Yu., Structural, mechanical, and transport properties of scandia and yttria partially stabilized zirconia crystals, Inorg. Mater., 2019, vol. 55, no. 7, pp. 748–753. https://doi.org/10.1134/S0020168521010155

    Article  CAS  Google Scholar 

  23. Kalinina, E.G. and Pikalova, E.Yu., Preparation and properties of stable suspensions of ZrO2–Y2O3 powders with different particle sizes for electrophoretic deposition, Inorg. Mater., 2020, vol. 56, no. 9, pp. 941–948. https://doi.org/10.1134/S0020168520090095

    Article  CAS  Google Scholar 

  24. Morozova, L.V., Kalinina, M.V., Drozdova, I.A., and Shilova, O.A., Preparation and characterization of nanoceramics for solid oxide fuel cells, Inorg. Mater., 2018, vol. 54, no. 1, pp. 79–86. https://doi.org/10.1134/S0020168518010107

    Article  CAS  Google Scholar 

  25. Kaleva, G.M., Mosunov, A.V., Sadovskaya, N.V., and Politova, E.D., Phase formation, microstructure, and ionic conductivity of (La,Sr)(Ga,Ge,Mg)O3 – d Ceramics, Inorg. Mater., 2017, vol. 53, no. 7, pp. 764–769. https://doi.org/10.1134/S002016851707010X

    Article  CAS  Google Scholar 

  26. Stenina, I.A. and Yaroslavtsev, A.B., High-temperature and composite proton-conducting electrolytes, Inorg. Mater., 2017, vol. 53, no. 4, pp. 343–353. https://doi.org/10.1134/S0020168517040161

    Article  CAS  Google Scholar 

  27. Tarasova, N.A., Animitsa, I.E., Galisheva, A.O., and Anokhina, I.A., Structure and electrical properties of a new Zn-substituted oxygen ion conductor based on BaLaInO4, Russ. J. Inorg. Chem., 2021, vol. 66, pp. 108–112. https://doi.org/10.1134/S0036023621010095

    Article  CAS  Google Scholar 

  28. Tret'yakov, Yu.D., Martynenko, L.I., Grigor’ev, A.N., and Tsivadze, A.Yu., Neorganicheskaya khimiya elementov (Inorganic Chemistry of Elements), Moscow: Khimiya, 2001, book 1.

  29. Shlyakhtina, A.V., Lyskov, N.V., Konysheva, E.Yu., Chernyak, S.A., Kolbanev, I.V., Vorobieva, G.A., and Shcherbakova, L.G., Gas-tight proton-conducting Nd2 − xCaxZr2O7 − δ (x = 0, 0.05) ceramics, J. Solid State Electrochem., 2020, vol. 24, no. 7, pp. 1475–1486.

    Article  CAS  Google Scholar 

  30. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Applications, Toronto: Wiley, 2005, pp. 129–204.

    Book  Google Scholar 

  31. Shlyakhtina, A.V., Pygalskiy, K.S., Belov, D.A., Lyskov, N.V., Kharitonova, E.P., Kolbanev, I.V., Borunova, A.B., Karyagina, O.K., Sadovskaya, E.M., Sadykov, V.A., and Eremeev, N.F., Proton and oxygen ion conductivity in the pyrochlore/fluorite family of Ln2 – xCaxScMO7 – δ (Ln = La, Sm, Ho, Yb; M = Nb, Ta; x = 0, 0.05, 0.1) niobates and tantalates, J. Chem. Soc., Dalton Trans., 2018, vol. 47, no. 7, pp. 2376–2392. https://doi.org/10.1039/C7DT03912C

    Article  CAS  Google Scholar 

  32. Shlyakhtina, A.V., Lyskov, N.V., Shchegolikhin, A.N., Kolbanev, I.V., Chernyak, S.A., and Konysheva, E.Yu., Valence state of europium and samarium in Ln2Hf2O7 (Ln = Eu, Sm) based oxygen-ion conductors, Ceram. Int., 2021. https://doi.org/10.1016/j.ceramint.2021.06.099

  33. Liu, Z.-G., Gao, S., Ouyang, J.-H., and Xia, X.-L., Influence of MoO3 doping on structure and electrical conductivity of defect fluorite-type Gd2Zr2O7, J. Alloys Compd., 2010, vol. 506, no. 2, pp. 868–871. https://doi.org/10.1016/j.jallcom.2010.07.101

    Article  CAS  Google Scholar 

  34. Anokhina, I.A., Animitsa, I.E., Buzina, A.F., Voronin, V.I., Vykhodets, V.B., Kurennykh, T., and Zaikov, Y.P., Synthesis, structure and electrical properties of Li+-doped pyrochlore Gd2Zr2O7, Chim. Technol. Acta, 2020, vol. 7, no. 2, pp. 51–60. https://doi.org/10.15826/chimtech.2020.7.2.02

    Article  CAS  Google Scholar 

  35. Pikalova, E.Yu. and Kalinina, E.A., Solid oxide fuel cells based on ceramic membranes with mixed conductivity: improving efficiency, Russ. Chem. Rev., 2021, vol. 90, no. 6, pp. 703–749.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences (state registration no. AAAA-A20-120013190076-0). The structure refinement was part of the state research target for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. AAAA-A21-121011390053-4).

Author information

Authors and Affiliations

Authors

Contributions

A.V. Shlyakhtina and I.V. Kolbanev conceived and designed the experiments, synthesized the samples, and determined their structure. N.V. Gorshkov and A.V. Kas’yanova studied the ceramics by impedance spectroscopy. K.I. Shefer refined the structure of the samples. A.V. Shlyakhtina, N.V. Gorshkov, and D.A. Medvedev wrote the paper. All of the authors discussed the results.

Corresponding author

Correspondence to A. V. Shlyakhtina.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyakhtina, A.V., Gorshkov, N.V., Kolbanev, I.V. et al. Electrical Properties of Beryllium-Doped Gd2Zr2O7. Inorg Mater 57, 1184–1193 (2021). https://doi.org/10.1134/S002016852111011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852111011X

Keywords:

Navigation