Skip to main content
Log in

Analytical Solutions to Models of Local Nonequilibrium Heat Transfer

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

A series of boundary-value problems of local nonequilibrium heat transfer is considered in terms of the theory of transient heat conduction for hyperbolic-type equations (wave equations). The mathematical models for the generalized equation have been studied simultaneously in Cartesian, cylindrical (radial heat flux), and spherical (central symmetry) coordinate systems. The technique to determine analytical solutions to a broad class of practically important problems of transient heat conduction for canonical bodies (plate, solid cylinder, and solid sphere) and for partially bounded bodies (half-space bounded by a flat surface and spaces with an internal cylindrical cavity and an internal spherical cavity) has been developed. The obtained, exact analytical solutions to a series of model problems can be considered as radically new results of analytical thermal physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kartashov, E.M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel (Analytical Methods in the Theory of Thermal Conductivity of Solids), Moscow: Vysshaya Shkola, 2001.

  2. Kartashov, E.M. and Kudinov, V.A., Analiticheskie metody teorii teploprovodnosti i ee prilozheniya (Analytical Methods of the Theory of Heat Conduction and Its Applications), Moscow: URSS, 2018.

  3. Zarubin, V.S., Inzhenernye metody resheniya zadach teploprovodnosti (Engineering Methods for Solving Heat Conduction Problems), Moscow: Energoatomizdat, 1983.

  4. Lykov, A.V., Teoriya teploprovodnosti (Heat Conduction Theory), Moscow: Vysshaya Shkola, 1967.

  5. Lykov, A.V., Teploprovodnost’ i diffuziya (Thermal Conductivity and Diffusion), Moscow: Gizlegprom, 1941.

  6. Cattaneo, C., Atti Semin. Mat. Fis. Univ. Modena, 1948, vol. 3, p. 83.

    Google Scholar 

  7. Vernotte, P., C. R. Acad. Sci., 1958, vol. 246, no. 22, p. 3154.

    Google Scholar 

  8. Maxwell, J.C., Philos. Trans. R. Soc. London, 1967, vol. 157, no. 1, p. 49.

    Google Scholar 

  9. Tissa, L., Nature, 1938, vol. 141, no. 3577, p. 913.

    ADS  Google Scholar 

  10. Landau, L.D., Zh. Eksp. Teor. Fiz., 1941, vol. 2, no. 6, p. 592.

    ADS  Google Scholar 

  11. Peshkov, V.P., Zh. Eksp. Teor. Fiz., 1946, vol. 16, no. 8, p. 744.

    Google Scholar 

  12. Ward, J.C. and Wilks, J., Philos. Mag., 1952, vol. 43, no. 336, p. 48.

    Article  Google Scholar 

  13. Dinqle, R.B., Proc. Phys. Soc., 1952, vol. 65, no. 396A, p. 1040.

    Article  Google Scholar 

  14. London, F., Superfluids 2, New York: Wiley, 1954.

    MATH  Google Scholar 

  15. Ackermann, C.C., Guyer, R.A., Bertman, B., and Fairbank, H.A., Phys. Rev. Lett., 1966, vol. 16, no. 18, p. 789.

    Article  ADS  Google Scholar 

  16. Gurevich, V.L. and Shklovskii, R.P., Fiz. Tverd. Tela, 1966, vol. 8, no. 10, p. 3050.

    Google Scholar 

  17. Gurzhi, R.N. and Kontorovich, V.M., Sov. Phys. JETP, 1969, vol. 28, p. 577.

    ADS  Google Scholar 

  18. Gurzhi, R.N., Fiz. Tverd. Tela, 1965, vol. 7, no. 12, p. 3515.

    Google Scholar 

  19. Kashcheev, V.N., Izv. Akad. Nauk Latv. SSR, Ser. Fiz.-Tekh. Nauk, 1969, no. 2, p. 36.

  20. Chester, M., Phys. Rev., 1963, vol. 131, no. 5, p. 2013.

    Article  ADS  Google Scholar 

  21. Kaliski, S., Bull. Acad. Pol. Sci. Technol., 1965, vol. 13, no. 5, p. 409.

    Google Scholar 

  22. Herwiq, H. and Beckert, K., Heat Mass Transfer, 2000, vol. 36, p. 387.

    Article  ADS  Google Scholar 

  23. Mitra, K., Kumar, S., Vedavars, A., and Mjallemi, M.K., J. Heat Transfer, 1995, vol. 117, no. 3, p. 568.

    Article  Google Scholar 

  24. Kirsanov, Yu.A. and Kirsanov, A.Yu., Izv. Ross. Akad. Nauk, Energ., 2015, no. 1, p. 113.

  25. Kirsanov, Yu.A., High Temp., 2017, vol. 55, no. 4, p. 535.

    Article  Google Scholar 

  26. Kartashov, E.M., J. Eng. Phys. Thermophys., 2014, vol. 87, no. 5, p. 1116.

    Article  Google Scholar 

  27. Formalev, V.F., Teploprovodnost’ anizotropnyh tel. Analiticheskie metody resheniya zadach (Thermal Conductivity of Anisotropic Bodies. Methods for Solving Analytical Problem), Moscow: Fizmatlit, 2014.

  28. Formalev, V.F. and Kolesnik, S.A., High Temp., 2019, vol. 57, no. 4, p. 498.

    Article  Google Scholar 

  29. Formalev, V.F., Kolesnik, S.A., and Kuznetsova, E.L., High Temp., 2019, vol. 57, no. 1, p. 58.

    Article  Google Scholar 

  30. Kartashov, E.M., Tonkie Khim. Tekhnol., 2019, vol. 14, no. 4, p. 77.

    Google Scholar 

  31. Carslaw, H.S. and Jaeger, J.C., Operational Methods in Applied Mathematics, Oxford: Oxford Univ. Press, 1945.

    MATH  Google Scholar 

  32. Lavrent’ev, M.A. and Shabat, B.V., Metody teorii funkcij kompleksnogo peremennogo (Methods of the Theory of Functions of a Complex Variable), Moscow: Nauka, 1965.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Kartashov.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartashov, E.M. Analytical Solutions to Models of Local Nonequilibrium Heat Transfer. High Temp 59, 259–267 (2021). https://doi.org/10.1134/S0018151X21020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21020048

Navigation