Skip to main content
Log in

Study of trifluoromethane dissociation within wide pressure and temperature ranges by molecular resonance absorption spectroscopy

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The concentration of CF2 produced via trifluoromethane, CF3H, dissociation behind reflected shock waves is measured by molecular resonance absorption spectroscopy method within wide ranges of CF3H concentrations, temperatures, and pressures (38 ≤ n[CF3H] ≤ 27000 ppm, 1180 ≤ T ≤ 2780 K, and P = 1.5–18 bar). The heat release of CF2 radical formation in trifluoromethane pyrolysis is experimentally determined. We analyze the experimental data obtained at low and high pressures and find the normalization factor for the best coincidence of those data. We determine the activation energy E a at low and high pressures and obtain the generalized activation energy E a for all the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Emelianov, A.V., Eremin, A.V., Makeich, A.A., and Fortov, V.E., High Temp., 2010, vol. 48, no. 6, pp. 823.

    Article  Google Scholar 

  2. Golub, V.V., Gurentsov, E.V., Emelianov, A.V., Eremin, A.V., and Fortov, V.E., High Temp., 2015, vol. 53, no. 3, pp. 363.

    Article  Google Scholar 

  3. Gurentsov, E.V., Divakov, O.G., and Eremin, A.V., High Temp., 2002, vol. 40, no. 3, pp. 379.

    Article  Google Scholar 

  4. Smekhov, G.D. and Shatalov, O.P., High Temp., 2016, vol. 54, no. 1, pp. 89.

    Article  Google Scholar 

  5. Hastie, J.W., J. Res. Natl. Bur. Stand., Sect. A, 1973, vol. 77, pp. 733.

    Article  Google Scholar 

  6. Shebeko, Yu.N., Azatyan, V.V., Bolodian, I.A., Navzenya, V.Yu., Kopylov, S.N., Shebeko, D.Yu., and Zamishevski, E.D., Combust. Flame, 2000, vol. 121, pp. 542.

    Article  Google Scholar 

  7. Azatyan, V.V., Shebeko, Yu.N., Shebeko, A.Yu., and Navtsenya, V.Yu., Russ. J. Phys. Chem. B, 2010, vol. 4, no. 5, pp. 760.

    Article  Google Scholar 

  8. Shebeko, Yu.N., Shebeko, A.Yu., Zuban’, A.V., and Navtsenya, V.Yu., Pozharnaya Bezop., 2011, no. 3, pp. 28.

    Google Scholar 

  9. Babushok, V., Noto, T., Burgess, D.R.F., Hamins, A., and Tsang, W., Combust. Flame, 1996, vol. 107, pp. 351.

    Article  Google Scholar 

  10. Baug, J.C., Glaude, P.A., Pommier, P., Battin-Leclerc, F., Scacchi, G., Come, G.M., Baronnet, F., and Paillard, C., J. Chim. Phys. Phys.-Chim. Biol., 1997, vol. 94, no. 3, pp. 460.

    Google Scholar 

  11. Tschuikow-Roux, E. and Marte, J.E., Int. J. Chem. Phys., 1965, vol. 42, no. 6, pp. 2049.

    Article  ADS  Google Scholar 

  12. Tschuikow-Roux, E., J. Chem. Phys., 1965, vol. 42, no. 10, pp. 3639.

    Article  ADS  Google Scholar 

  13. Modica, A.P. and LaGraff, J.E., J. Chem. Phys., 1966, vol. 44, no. 9, pp. 3375.

    Article  ADS  Google Scholar 

  14. Politanskii, S.F. and Shevchuk, V.U., Kinet. Katal., 1968, vol. 9, no. 3, pp. 496.

    Google Scholar 

  15. Schug, K.P., Wagner, H.Gg., and Zabel, F., Ber. Bunsen-Ges., 1979, vol. 83, pp. 167.

    Article  Google Scholar 

  16. Hidaka, Y., Nakamura, T., Tanaka, H., Inami, K., and Kawano, H., Chem. Phys. Lett., 1991, vol. 187, no. 12, pp. 40.

    Article  ADS  Google Scholar 

  17. Placzek, D.W., Rabinovitch, B.S., Whitten, G.Z., and Tschuikow-Roux, E., J. Chem. Phys., 1965, vol. 43, no. 11, pp. 4071.

    Article  ADS  Google Scholar 

  18. Cobos, C.J., Croce, A.E., Luther, K., and Troe, H.-J., Z. Phys. Chem., 2011, vol. 225, pp. 1019.

    Article  Google Scholar 

  19. Dalby, F.W., J. Chem. Phys., 1964, vol. 41, no. 8, pp. 2297.

    Article  ADS  Google Scholar 

  20. Sharpe, S., Hartnett, B., Sethi, H.S., and Sethi, D.S., J. Photochem., 1987, vol. 38, pp. 1.

    Article  Google Scholar 

  21. Talukdar, R.K., Hunter, M., Warren, R.F., Burkholder, J.B., and Ravishankara, A.R., Chem. Phys. Lett., 1996, vol. 262, pp. 669.

    Article  ADS  Google Scholar 

  22. King, D.S., Schenck, P.K., and Stephenson, J.C., J. Mol. Spectrosc., 1979, vol. 78, pp. 1.

    Article  ADS  Google Scholar 

  23. Naudet, V., Abid, S., and Paillard, C.E., J. Chem. Phys., 1999, vol. 96, pp. 1123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Emelianov.

Additional information

Original Russian Text © A.V. Drakon, A.V. Emelianov, A.V. Eremin, P.I. Yatsenko, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 2, pp. 247–254.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drakon, A.V., Emelianov, A.V., Eremin, A.V. et al. Study of trifluoromethane dissociation within wide pressure and temperature ranges by molecular resonance absorption spectroscopy. High Temp 55, 239–245 (2017). https://doi.org/10.1134/S0018151X17020043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17020043

Navigation