Skip to main content
Log in

Influence of the Luminous Gas Phase into Butane Plasma Polymerization in a Closed Reactor System

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

This study investigated the plasma polymerization process of butane in a closed radio frequency plasma reactor system. Optical emission spectra of the luminous gas phase specified the main plasma species in the plasma system are radical species of CH and H (Balmer series). In the early stage of the butane plasma polymerization process, dissociation glow (cathode glow) was the primary glow with much higher deposition rate observed due to the availability of CH radicals in the system. In the late stage of the plasma process, in contrast, negative glow dominated and plasma deposition rate significantly decreased and eventually stopped due to exhaustion of the film forming CH radicals as confirmed by OES spectra of the luminous plasma phase. The results indicate that dissociation glow in the discharge creates hydrocarbon species for plasma polymeric film deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Akishev, Y.S., Grushin, M.E., Monich, A.E., Napartovich, A.P., and Trushkin, N.I., High Energy Chem., 2003, vol. 37, p. 286.

    Article  CAS  Google Scholar 

  2. Barinov, S.M., Svettsov, V.I., and Efremov, A.M., High Energy Chem., 2012, vol. 46, no. 4, p. 276.

    Article  CAS  Google Scholar 

  3. Lin, Y.S., Chang, C.H., and Huang, T.J., Surf., Coat. Technol., 2006, vol. 200, p. 3355.

    Article  CAS  Google Scholar 

  4. Bukhovets, V.L., Gorodetsky, A.E., Zalavutdinov, R.Kh., and Zakharov, A.P., High Energy Chem., 2013, vol. 47, no. 2, p. 67.

    Article  CAS  Google Scholar 

  5. Smirnov, V.A., Denisov, N.N., Plotnikov, V.G., and Alfimov, M.V., High Energy Chem., 2016, vol. 50, no. 1, p. 51.

    Article  CAS  Google Scholar 

  6. Yasuda, H. and Yu, Q., J. Vac. Sci. Technol., A, 2004, vol. 22, p. 472.

    Article  CAS  Google Scholar 

  7. Lin, Y.S., Weng, M.S., Chung, T.W., and Huang, C., Surf. Coat. Technol., 2011, vol. 205, p. 3856.

    Article  CAS  Google Scholar 

  8. Shayapov, V.R., Rumyantsev, Y.M., and Plyusnin, P.E., High Energy Chem., 2016, vol. 50, no. 3, p. 213.

    Article  CAS  Google Scholar 

  9. Gilliam, M,A, Farhat, S.A., Garner, G.E., Stubbs, B.P., and Peterson, B.B., Plasma Process. Polym., 2019, vol. 7. https://doi.org/10.1002/ppap.201900024

  10. Ledernez, L., Olcaytug, F., Yasuda, H., and Urban, G., J. Appl. Phys., 2008, vol. 104, p. 103303.

    Article  Google Scholar 

  11. Claeyssens, F., Ashfold, M.N., Sofoulakis, E., Ristoscu, C.G., Anglos, D., and Fotakis, C., J. Appl. Phys., 2002, vol. 91, p. 6162.

    Article  CAS  Google Scholar 

  12. Yu, Q.S., Huang, C., and Yasuda, H.K., J. Polym. Sci., Part A: Polym. Chem., 2004, vol. 42, p. 1042.

    Article  CAS  Google Scholar 

  13. Gilliam, M., Yu, Q., and Yasuda, H.K., Plasma Process. Polym., 2007, vol. 4, p.165.

    Article  CAS  Google Scholar 

  14. Huang, C., Yu, Q., and Wu, S.Y., Vacuum, 2010, vol. 84, p. 1402.

    Article  CAS  Google Scholar 

  15. Hegemann, D., Pure Appl. Chem., 2008, vol. 80, p. 1893.

    Article  CAS  Google Scholar 

  16. Hegemann, D., Körner, E., and Guimond, S., Plasma Process. Polym., 2009, vol. 6, p. 246.

    Article  CAS  Google Scholar 

  17. Whittle, J.D., Short, R.D., and Guimond, S., Plasma Process. Polym., 2011, vol. 8, p. 687.

    Article  CAS  Google Scholar 

  18. Dagel. D.J., Mallouris, C.M., and Doyle, J.R., J. Appl. Phys., 1996, vol. 79, p. 8753.

  19. Huang, Y.C., Yu, Q.S., and Huang, C., Thin Solid Films, 2016, vol. 618, p.213.

    Article  CAS  Google Scholar 

  20. Yasuda, H., Luminous Chemical Vapor Deposition and Interface Engineering, New York: Marcel Dekker, 2005, p. 37.

    Google Scholar 

  21. Yasuda, H.K., Plasma Process. Polym., 2005, vol. 2, p. 293.

    Article  CAS  Google Scholar 

  22. Constantin, L.V., Rom. J. Phys., 2007, vol. 52, p. 611.

    CAS  Google Scholar 

  23. Petruczok, C.D., Chen, N., and Gleason, K.K., Langmuir, 2014, vol. 30, p. 4830.

    Article  CAS  Google Scholar 

  24. Yu, Q., Moffitt, C.E., Wieliczka, D.M., and Yasuda, H., J. Vac. Sci. Technol., A, 2001, vol. 19, p. 2163.

    Article  CAS  Google Scholar 

  25. Yang, S.H., Liu, C.H., Hsu, W.T., and Chen, H., Surf. Coat. Technol., 2009, vol. 203, p. 1379.

    Article  CAS  Google Scholar 

  26. Ronkainen, H., Likonen, J., Koskinen, J., and Varjus, S., Surf. Coat. Technol., 1996, vol. 79, p. 87.

    Article  CAS  Google Scholar 

  27. Luque, L., Juchmann, W., Brinkman, E.A., and Jeffries, J.B., J. Vac. Sci. Technol., A, 1998, vol. 16, p. 397.

    Article  CAS  Google Scholar 

  28. Clay, K.J., Speakman, S.P., Amaratunga, G.J., and Silva, S.P., J. Appl. Phys., 1996, vol. 79, p. 7227.

    Article  CAS  Google Scholar 

  29. Yasuda, H., J. Appl. Polym. Sci., 2012, vol. 125, p. 2636.

    Article  CAS  Google Scholar 

  30. Kuo, Y.L., Chang, K.H., Hung, T.S., Chen, K.S., and Inagaki, N., Thin Solid Films, 2010, vol. 518, p. 7568.

    Article  CAS  Google Scholar 

  31. Iriyama, Y. and Uwajima, H., J. Photopolym. Sci. Technol., 2005, vol. 18, p. 267.

    Article  CAS  Google Scholar 

  32. Gandhi, A., Asija, N., Gaur, K.K., Rizvi, S.A., Tiwari, V., and Bhatnagar, N., Mater. Lett., 2013, vol. 93, p. 76.

    Article  Google Scholar 

  33. Kobayashi, H., Bell, A.T., and Shen, M., Macromolecules, 1974, vol. 7 p. 277.

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Authors’ contributions: The manuscript was written through contributions of all authors.

Corresponding author

Correspondence to Chun Huang.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

We declare that the manuscript is not being submitted to any journal during this time of submission.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

FINANCIAL INTERESTS

The authors declare they have no financial interests.

The authors have no relevant financial or non-financial interests to disclose.

Data availability: Data available on request from the authors.

Code availability: Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YC., Yu, Q. & Huang, C. Influence of the Luminous Gas Phase into Butane Plasma Polymerization in a Closed Reactor System. High Energy Chem 56, 122–130 (2022). https://doi.org/10.1134/S0018143922020059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922020059

Keywords:

Navigation