Skip to main content
Log in

Polarization Characteristics of High-Latitude Pi3 Geomagnetic Pulsations

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of a statistical study of the polarization characteristics of irregular geomagnetic Pi3 pulsations observed in polar regions of the magnetosphere and the effect of interplanetary conditions on them are presented. One-minute digital observations of the magnetic field of the Heiss Island (HIS, Φ' = 74.80°, Λ' = 144.46°) and Mirny (MIR, Φ' = –76.93°, Λ' = 122.92°) observatories are used. Pi3 pulsations are characterized by right-handed, left-handed, and mixed polarizations (R, L, and R&L types, respectively). Regardless of the polarization type, Pi3 pulsations have been observed mainly in the night sector of the magnetosphere at the final stage of the explosive phase of the substorm. The duration of the time delay between the substorm onset and the occurrence of Pi3 pulsations depends significantly on their polarization type. HIS and MIR show no dependence of the main characteristics (amplitude, frequency, ellipticity, and tilt of the main axis of the polarization ellipse) of Pi3 pulsations of R, L, and R&L types on local time. In HIS, R- and R&L-type Pi3 pulsations are observed mainly during slow solar-wind streams, and L-type pulsations are observed during high-speed streams from coronal holes. In MIR, Pi3 pulsations of the three polarization types are observed mainly during high-speed solar-wind streams. Small-scale closed structures of the magnetic field in the flow of slow and fast solar-wind currents determine the polarization type of Pi3 pulsations. It is revealed that the excitation of Pi3 pulsations of the R, L, and R&L types occurs at different levels of plasma turbulence in the magnetotail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Belakhovskii, V.B., Pilipenko, V.A., and Samsonov, S.N., Irregular Pi3 pulsations and their relation to charged particle fluxes in the magnetosphere and ionosphere, in Physics of Auroral Phenomena, Proc. XXXVIII Annual Seminar, Apatity: Kola Science Centre, Russian Academy of Science, 2015, pp. 71–74.

  2. Despirak, I.V., Lyubchich, A.A., and Kleimenova, N.G., Solar wind streams of different types and high-latitude substorms, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 1, pp. 1–6. https://doi.org/10.1134/S0016793219010055

  3. Han, D.-S., Yang, H.-G., Chen, Z.-T., Araki, T., Dunlop, M.W., Nosé, M., Iyemori, T., Li, Q., Gao, Y.-F., and Yumoto, K., Coupling of perturbations in the solar wind density to global Pi3 pulsations: A case study, J. Geophys. Res., 2007, vol. 112, art. ID A05217. https://doi.org/10.1029/2006JA011675

    Article  Google Scholar 

  4. Hsu, T.-S. and McPherron, R.L., A statistical study of the relation of Pi2 and plasma flows in the tail, J. Geophys. Res., 2007, vol. 112, art. ID A05209. https://doi.org/10.1029/2006JA011782

    Article  Google Scholar 

  5. Kennel, C.F., Buti, B., Hada, T., and Pellat, R., Nonlinear, dispersive, elliptically polarized Alfvén waves, Phys. Fluids, 1988, vol. 31, no. 7, pp. 1949–1961. https://doi.org/10.1063/1.866642

    Article  Google Scholar 

  6. King, J.H. and Papitashvili, N.E., Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data, J. Geophys. Res., 2005, vol. 110, art. ID A02104. https://doi.org/10.1029/2004JA010649

    Article  Google Scholar 

  7. Klain, B.I., Kurazhkovskaya, N.A., and Kurazhkovskii, A.Yu., Intermittency in wave processes, Izv., Phys. Solid Earth, 2008, vol. 44, no. 10, pp. 776–784.

    Article  Google Scholar 

  8. Kleimenova, N.G., Kozyreva, O.V., Bitterly, J., Bitterly, M., Long-period (T = 8–10 min) geomagnetic pulsations at high latitudes, Geomagn. Aeron. (Engl. Transl.), 1998, vol. 38, no. 4, pp. 436–445.

  9. Kleimenova, N.G., Antonova, E.E., Kozyreva, O.V., Malysheva, L.M., Kornilova, T.A., and Kornilov, I.A., Wave structure of magnetic substorms at high latitudes, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 6, pp. 746–754.

  10. Klein, L.W. and Burlaga, L.F., Interplanetary magnetic clouds at 1AU, J. Geophys. Res., 1982, vol. 87, pp. 613–624.https://doi.org/10.1029/JA087iA02p00613

    Article  Google Scholar 

  11. Kodera, K., Gendrin, R., and Villedary, C., Complex representation of a polarized signal and its application to the analysis of ULF waves, J. Geophys. Res., 1977, vol. 82, no. 7, pp. 1245–1255. https://doi.org/10.1029/JA082i007p01245

    Article  Google Scholar 

  12. Kozyreva, O.V., Myagkova, I.N., Antonova, E.E., and Kleimenova, N.G., Precipitation of energetic electrons and Pi3 geomagnetic pulsations at polar latitudes, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 6, pp. 741–749.

  13. Kurazhkovskaya, N.A. and Klain, B.I., Effect of geomagnetic activity, solar wind and parameters of interplanetary magnetic field on regularities in intermittency of Pi2 geomagnetic pulsations, Soln.-Zemnaya Fiz., 2015, vol. 1, no. 3, pp. 11–20. https://doi.org/10.12737/11551

    Article  Google Scholar 

  14. Lazarian, A. and Vishniac, E.T., Reconnection in a weakly stochastic field, Astrophys. J., 1999, vol. 517, no. 2, pp. 700–718. https://doi.org/10.1086/307233

    Article  Google Scholar 

  15. Malinetskii, G.G. and Potapov, A.B., Sovremennye problemy nelineinoi dinamiki (Modern Problems of Nonlinear Dynamics), Moscow: Editorial URSS, 2000.

  16. Marubashi, K., Interplanetary magnetic flux ropes observed by the Pioneer Venus Orbiter, Adv. Space Res., 1991, vol. 11, pp. 57–60. https://doi.org/10.1016/0273-1177(91)90090-7

    Article  Google Scholar 

  17. Matsuoka, H., Takahashi, K., Yumoto, K., Anderson, B.J., and Sibeck, D.G., Observation and modeling of compressional Pi3 magnetic pulsations, J. Geophys. Res., 1995, vol. 100, no. A7, pp. 12103–12115. https://doi.org/10.1029/94JA03368

    Article  Google Scholar 

  18. Nagano, H., Suzuki, A., and Kim, J.S., Pi3 magnetic pulsations associated with substorms, Space Sci., 1981, vol. 29, no. 5, pp. 529–553. https://doi.org/10.1016/0032-0633(81)90067-2

    Article  Google Scholar 

  19. Nusinov, A.A., Plasma layer effect on natural oscillations of the magnetotail, Kosm. Issled., 1971, no. 9, pp. 615–617.

  20. Olson, J., Pi2 pulsations and substorm onsets: A review, J. Geophys. Res., 1999, vol. 104, pp. 17499–17520. https://doi.org/10.1029/1999JA900086

    Article  Google Scholar 

  21. Pudovkin, M.I., Raspopov, O.M., and Kleimenova, N.G., Vozmushcheniya elektromagnitnogo polya Zemli. Tom 2. Korotkoperiodicheskie kolebaniya geomagnitnogo polya (Disturbances in the Earth’s Electromagnetic Field, Vol. 2: Short-Period Oscillations in the Geomagnetic Field), Leningrad: Leningr. Gos. Univ., 1976.

  22. Raspopov, O.M., Chernous, S.A., and Kiselev, B.V., High-latitude pulsations of the geomagnetic field and their use in the diagnostics of magnetospheric parameters, Geomagn. Aeron., 1971, vol. 11, no. 4, pp. 669–673.

    Google Scholar 

  23. Saito, T., Geomagnetic pulsations, Space Sci. Rev., 1969, vol. 10, pp. 319–412. https://doi.org/10.1007/BF00203620

    Article  Google Scholar 

  24. Saito, T., Examination of the models for the substorm-associated magnetic pulsation Ps 6, Sci. Rep. Tohoku Univ., Ser. 5: Geophys., 1974, vol. 22, pp. 35–39.

    Google Scholar 

  25. Saito, T., Long period irregular magnetic pulsations Pi3, Space Sci. Rev., 1978, vol. 21, pp. 427–467. https://doi.org/10.1007/BF00173068

    Article  Google Scholar 

  26. Saito, T. and Yumoto, K., Comparison of the two-snake model with the observed polarization of the substorm-associated magnetic pulsation Ps6, J. Geomagn. Geoelectr., 1978, vol. 30, pp. 39–54. https://doi.org/10.5636/jgg.30.39

    Article  Google Scholar 

  27. Sarries, E.T. and Krimigis, S., Evidence for solar magnetic loops beyond 1 AU, Geophys. Res. Lett., 1982, vol. 9, pp. 167–170. https://doi.org/10.1029/GL009i002p00167

    Article  Google Scholar 

  28. Suzuki, A., Nagano, H., Kim, J.S., and Sugiura, M., A statistical study on characteristics of high latitude Pi3 pulsations, J. Geophys. Res., 1981, vol. 86, no. A3, pp. 1345–11354. https://doi.org/10.1029/JA086iA03p01345

    Article  Google Scholar 

  29. Yagova, N.V., Pilipenko, V.A., Lanzerotti, L.J., Engebretson, M.J., Rodger, A.S., Lepidi, S., and Papitashvili, V.O., Two-dimensional structure of long-period pulsations at polar latitudes in Antarctica, J. Geophys. Res., 2004, vol. 109, A03222. https://doi.org/10.1029/2003JA010166

    Article  Google Scholar 

  30. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.

    Article  Google Scholar 

  31. Zelenyi, L.M., Malova, H.V., Grigorenko, E.E., and Popov V.Yu., Thin current sheets: from the work of Ginzburg and Syrovatskii to the present day, Phys.-Usp., 2016, vol. 59, no. 11, pp. 1057–1090. https://doi.org/10.3367/UFNe.2016.09.037923

    Article  Google Scholar 

Download references

6. ACKNOWLEDGMENTS

The authors express gratitude to the World Data Center for Solar–Terrestrial Physics (Moscow) for providing us with geomagnetic data from Heiss Island and Mirny observatories, to the creators of the OMNI 2 dataset (Goddard Space Flight Center, NASA, United States) for providing us with solar-wind and IMF parameters and Kp, AE, AL, and Dst indices, and to the authors of “The Catalog of Large-Scale Solar Wind Phenomena for 1976–2002” (Institute of Space Research, Russian Academy of Sciences, Moscow) for providing us with relevant data.

Funding

This work was conducted within the project “Effect of space factors on the development of extreme processes in the Earth’s magnetosphere” (state research target no. 0144-2014-00116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kurazhkovskaya.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurazhkovskaya, N.A., Klain, B.I. Polarization Characteristics of High-Latitude Pi3 Geomagnetic Pulsations. Geomagn. Aeron. 61, 201–214 (2021). https://doi.org/10.1134/S0016793221010102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221010102

Navigation