Skip to main content
Log in

Effects of the Strong Ionospheric Storm of August 26, 2018: Results of Multipath Radiophysical Monitoring

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A brief description of the multipath coherent radio technique installation is presented. Its goal is continuous monitoring of the dynamical processes in the ionosphere caused by space weather variations and the impact of high-energy sources in the Earth–atmosphere–ionosphere–magnetosphere system. The variations of radio-wave characteristics (the Doppler spectra and signal amplitudes) in the HF range and the ionospheric parameters over China during the ionospheric storm of August 26, 2018, are described. An ∼50–100 km ascent in the radio-wave reflection region and its oscillations with an amplitude of ∼30–40 km were observed many times during the storm on all paths. The ascents were followed by descents of the radio-wave reflection region by many tens of kilometers. The ascents and descents of the reflection region were caused by a decrease in the electron concentration by a factor of 1.5–2 and its increase by a few times, respectively. The maximal increase in the electron concentration in the E and F regions reached a factor of 1.5 and 3, respectively. The relative amplitude of oscillations in the electron concentration reached many tens of percent. The amplitude of oscillations of frequency Doppler shift was several times lower on the reference days. The observed oscillations in the frequency Doppler shift were apparently caused by generation of the atmospheric gravity waves and their subsequent propagation to the latitudes of the means of observation. The velocity of wave disturbances was ∼275–480 m/s, whereas their period was ∼60 min. The ionospheric disturbances of August 27, 2018, were insignificant despite the repeated magnetic storm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Afraimovich, E.L. and Perevalova, N.P., GPS-monitoring verkhnei atmosfery Zemli (GPS Monitoring of the Earth’s Upper Atmosphere), Irkutsk: ISZF, 2006.

  2. Blagoveshchenskii, D.V., Effect of magnetic storms (substorms) on HF propagation: A review, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 4, pp. 409–423.

  3. Bothmer, V. and Daglis, I., Space Weather: Physics and Effects, New York: Springer, 2006.

    Google Scholar 

  4. Bradley, P.A., Cander, L.R., Kutiev, I., and Hanbaba, R., PRIME (COST 238) studies of ionospheric storm effects, Adv. Space Res., 1997, vol. 20, no. 9, pp. 1669–1678.

    Article  Google Scholar 

  5. Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.

  6. Buonsanto, M.J., Ionospheric storms—a review, Space Sci. Rev., 1999, vol. 88, pp. 563–601.

    Article  Google Scholar 

  7. Chernogor, L.F. and Domnin, I.F., Fizika geokosmicheskikh bur’ (Physics of Geospace Storms), Kharkov: KhNU im. V.N. Karazina, Institut ionosfery NAN i MON Ukrainy, 2014.

  8. Chernogor, L.F. and Katsko, S.V., Perturbations in parameters of the ionospheric channel of radio wave propagation during geospace storms, Vestn. Povolzh. Gos. Tekhnol. Univ., 2013, vol. 3, no. 19, pp. 5–17.

    Google Scholar 

  9. Chernogor, L.F., Grigorenko, Ye.I., Lysenko, V.N., and Taran, V.I., Dynamic processes in the ionosphere during magnetic storms from the Kharkov incoherent scatter radar observations, Int. J. Geomagn. Aeron., 2007, vol. 7, GI3001. https://doi.org/10.1029/2005GI000125

    Article  Google Scholar 

  10. Danilov, A.D., F2-region response to geomagnetic disturbances (review), Geliogeofiz. Issled., 2013, no. 5, pp. 1–33.

  11. Danilov, A.D. and Laštovička, J., Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeron., 2001, vol. 2, no. 3, pp. 209–224.

    Google Scholar 

  12. Danilov, A.D. and Morozova, L.D., Ionospheric storms in the F2 region. Morphology and physics (review), Geomagn. Aeron., 1985, vol. 25, no. 5, pp. 705–721.

    Google Scholar 

  13. Davies, K., Ionospheric Radio, London: Peter Peregrinus Ltd., 1990.

    Book  Google Scholar 

  14. Galushko, V.G., Beley, V.S., Koloskov, A.V., Yampolski, Y.M., Paznukhov, V.V., Reinisch, B.W., Foster, J.C., and Erickson, P.J., Frequency-and-angular HF sounding and ISR diagnostics of TIDs, Radio Sci., 2003, vol. 38, no. 6, pp. 10-1–10-9. https://doi.org/10.1029/2002RS002861

  15. Galushko, V.G., Kascheev, A.S., Paznukhov, V.V., Yampolski, Y.M., and Reinisch, B.W., Frequency-and-angular sounding of traveling ionospheric disturbances in the model of three-dimensional electron density waves, Radio Sci., 2008, vol. 43, no. 4, pp. 1–10. https://doi.org/10.1029/2007RS003735

    Article  Google Scholar 

  16. Grigorenko, E.I., Lysenko, V.N., Taran, V.I., and Chernogor, L.F., Results of radiophysical studies of ionospheric processes accompanying the strong geomagnetic storm of September 25, 1998, Usp. Sovrem. Radioelektron., 2003, no. 9, pp. 57–94.

  17. Grigorenko, E.I., Pazyura, S.A., Taran, V.I., Chernogor, L.F., and Chernyaev, S.V., Dynamic processes in the ionosphere during the severe magnetic storm of May 30–31, 2003, Geomagn. Aeron. (Engl. Transl.), 2005a, vol. 45, no. 6, pp. 758–777.

  18. Grigorenko, E.I., Lysenko, V.N., Taran, V.I., and Chernogor, L.F., Specific features of the ionospheric storm of March 20–23, 2003, Geomagn. Aeron. (Engl. Transl.), 2005b, vol. 45, no. 6, pp. 745–757.

  19. Grigorenko, E.I., Lysenko, V.N., Pazyura, S.A., Taran, V.I., and Chernogor, L.F., Ionospheric disturbances during the severe magnetic storm of November 7–10, 2004, Geomagn. Aeron. (Engl. Transl.), 2007a, vol. 47, no. 6, pp. 720–738.

  20. Grigorenko, E.I., Lysenko, V.N., Taran, V.I., and Chernogor, L.F., Analysis and classification of ionospheric storms in European midlatitudes. 1, Kosm. Nauka Tekhnol., 2007b, vol. 13, no. 5, pp. 58–76. https://doi.org/10.15407/knit2007.05.058

    Article  Google Scholar 

  21. Grigorenko, E.I., Lysenko, V.N., Taran, V.I., and Chernogor, L.F., Analysis and classification of ionospheric storms in European midlatitudes. 2, Kosm. Nauka Tekhnol., 2007c, vol. 13, no. 5, pp. 77–96. https://doi.org/10.15407/knit2007.05.077

    Article  Google Scholar 

  22. Gulyaeva, T.L., Indicators of ionospheric variability during geomagnetic storms according to GPS observations, Soln.-Zemnaya Fiz., 2008, vol. 12, no. 2, pp. 231–233.

    Google Scholar 

  23. Ivanov, V.A., Kurkin, V.I., Nosov, V.E., Uryadov, V.P., and Shumaev, V.V., Chirp ionosonde and its application in the ionospheric research, Radiophys. Quant. Electron., 2003, vol. 46, no. 11, pp. 821–851. https://doi.org/10.1023/b:raqe.0000028576.51983.9c

    Article  Google Scholar 

  24. Laštovička, J. and Chum, J., A review of results of the international ionospheric Doppler sounder network, Adv. Space Res., 2017, vol. 60, no. 8, pp. 1629–1643. https://doi.org/10.1016/j.asr.2017.01.032

    Article  Google Scholar 

  25. Lazutin, L.L., Auroral oval as a beautiful but outdated paradigm, Soln.-Zemnaya Fiz., 2015, vol. 1, no. 1, pp. 23–35. https://doi.org/10.12737/5673

    Article  Google Scholar 

  26. Marple, S.L., Jr., Digital Spectral Analysis and Its Applications, New York: Prentice Hall, 1987; Moscow: Mir, 1990.

  27. Mikhailov, A.V., Depueva, A.H., and Depuev, V.H., Day-time F2-layer negative storm effect: What is the difference between storm-induced and Q-disturbance events?, Ann. Geophys., 2007, vol. 25, no. 7, pp. 1531–1541. https://doi.org/10.5194/angeo-25-1531-2007

    Article  Google Scholar 

  28. Mlynarczyk, J., Koperski, P., and Kulak, A., Multiple-site investigation of the properties of an HF radio channel and the ionosphere using Digital Radio Mondiale broadcasting, Adv. Space Res., 2012, vol. 49, no. 1, pp. 83–88. https://doi.org/10.1016/j.asr.2011.09.031

    Article  Google Scholar 

  29. Panasenko, S.V. and Chernogor, L.F., Results of radiophysical studies of wave disturbances in the lower ionosphere, Usp. Sovrem. Radioelektron., 2005, no. 7, pp. 38–56.

  30. Paznukhov, V.V., Galushko, V.G., and Reinisch, B.W., Digisonde observation of TIDs with frequency and angular sounding technique, Adv. Space Res., 2012, vol. 49, no. 4, pp. 700–710.

    Article  Google Scholar 

  31. Pictrella, M., Perrone, L., Fontana, G., et al., Oblique-incidence ionospheric soundings over Central Europe and their application for testing now casting and long term prediction models, Adv. Space Res., 2009, vol. 43, no. 11, pp. 1611–1620.

    Article  Google Scholar 

  32. Prölss, G.W., Ionospheric F-region storms, in Handbook of Atmospheric Electrodynamics 2, Volland, H., Ed., Boca Raton, Fla: CRC Press, 1995, pp. 195–248.

    Google Scholar 

  33. Prölss, G.W., Magnetic storm associated perturbations of the upper atmosphere, in Magnetic Storms, Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., and Arballo, J.K., Eds., Washington, DC: AGU, 1998, vol. 98, pp. 249–290.

    Google Scholar 

  34. Rees, D., Observation and modeling of ionospheric and thermospheric disturbances during major geomagnetic storms: A review, J. Atmos. Terr. Phys., 1995, vol. 57, no. 12, pp. 1433–1457. https://doi.org/10.1016/0021-9169(94)00142-B

    Article  Google Scholar 

  35. Reinisch, B.W. and Galkin, I.A., Global Ionospheric Radio Observatory (GIRO), Earth Planets Space, 2011, vol. 63, no. 4, pp. 377–381. https://doi.org/10.5047/eps.2011.03.001

    Article  Google Scholar 

  36. Schunk, R.W. and Sojka, J.J., Ionosphere–thermosphere space weather issues, J. Atmos. Terr. Phys., 1996, vol. 58, pp. 1527–1574. https://doi.org/10.1016/0021-9169(96)00029-3

    Article  Google Scholar 

  37. Shi, S.Z., Chen, G., Yang, G.B., Li, T., Zhao, Z.Y., and Liu, J.N., Wuhan ionospheric oblique-incidence sounding system and its new application in localization of ionospheric irregularities, IEEE Trans. Geosci. Remote Sens., 2015, vol. 53, no. 4, pp. 2185–2194. https://doi.org/10.1109/TGRS.2014.2357443

    Article  Google Scholar 

  38. Verhulst, T., Altadill, D., Mielich, J., et al., Vertical and oblique HF sounding with a network of synchronised ionosondes, Adv. Space Res., 2017, vol. 60, no. 8, pp. 1644–1656.

    Article  Google Scholar 

  39. Vijaya Lekshmi, D., Balan, N., Vaidyan, V.K., et al., Response of the ionosphere to super storms, Adv. Space Res., 2007, vol. 41, pp. 548–555. https://doi.org/10.1016/j.asr.2007.08.029

    Article  Google Scholar 

  40. Vijaya Lekshmi, D., Balan, N., Tulasi Ram, S., and Liu, J.Y., Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles, J. Geophys. Res., 2011, vol. 116, A11328. https://doi.org/10.1029/2011JA017042

    Article  Google Scholar 

  41. Yasyukevich, Yu.V., Perevalova, N.P., Edemskii, I.K., and Polyakova, A.S., Otklik ionosfery na gelio- i geofizicheskie vozmushchayushchie faktory po dannym GPS (Ionospheric Response to Helio- and Geophysical Disturbing Factors from GPS Data), Irkutsk: IGU, 2013.

Download references

Funding

L. F. Chernogor thanks the National Research Foundation of Ukraine for financial support (project 2020.02/0015 ”Theoretical and experimental studies of global disturbances from natural and technogenic sources in the Earth-atmosphere-ionosphere system”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. F. Chernogor, Qiang Guo or Yu Zheng.

Additional information

Translated by A. Danilov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F., Garmash, K.P., Guo, Q. et al. Effects of the Strong Ionospheric Storm of August 26, 2018: Results of Multipath Radiophysical Monitoring. Geomagn. Aeron. 61, 73–91 (2021). https://doi.org/10.1134/S001679322006002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322006002X

Navigation