Skip to main content
Log in

Ionospheric Precursors of Geomagnetic Storms. 1. A Review of the Problem

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The problem of the occurrence of disturbances of the ionospheric F2-layer parameters prior to the beginning of a geomagnetic storm is discussed. It is shown that disturbances (substantial deviations from quiet conditions) of both the critical frequency foF2 and the total electron content (TEC) in an ionospheric column are found in many studies a few hours and sometimes even two days before the SC (sudden storm commencement) moment. The amplitudes of the aforementioned disturbances are on average of 30–60%, however, they can exceed 100% in some cases. Deviations from the quiet conditions of both signs are possible; however, positive prestorm disturbances of foF2 and TEC are more common.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. de Abreu, A.J., Fagundes, P.R., Gende, M., Bolaji, O.S., de Jesus, R., and Brunini, C., Investigation of ionospheric response to two moderate geomagnetic storms using GPS-TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24, Adv. Space Res., 2014, vol. 53, pp. 1313–1328.

    Article  Google Scholar 

  2. Adebesin, B.O. and Adekoya, B.J., F2-layer response to a storm time disturbance at equatorial/low- and mid-latitude, Sun Geosphere, 2013, vol. 8, no. 1, pp. 33–39.

    Google Scholar 

  3. Adebiyi, S.J., Adimula, I.A., and Oladipo, O.A., Investigation on mid-latitude stations to storm-time variations of GPS-TEC, Adv. Space Res., 2015, vol. 55, pp. 1339–1348.

    Article  Google Scholar 

  4. Adekoya, B.J. and Adebesin, B.O., Ionospheric and solar wind variation during magnetic storm onset and main phase at low- and mid-latitudes, Acta Geophys., 2015, vol. 63, no. 4, pp. 1150–1180. https://doi.org/10.1515/acgeo-2015-0020

    Article  Google Scholar 

  5. Adekoya, B.J., Chukwuma, V.U., Bakare, N.O., and David, T.W., On the effects of geomagnetic storms and pre storm phenomena on low and middle latitude ionospheric F2, Astrophys. Space Sci., 2012a, vol. 340, no. 2, pp. 217–235.

    Article  Google Scholar 

  6. Adekoya, B.J., Chukwuma, V.U., Bakare, N.O., and David, T.W., The effects of geomagnetic storm on middle latitude ionospheric F2 variations during storm of April (2–6), 2004, Indian J. Radio Space, 2012b, vol. 41, no. 6, pp. 606–616.

    Google Scholar 

  7. Adekoya, B.J., Chukwuma, V.U., and Salako, S.A., On the coexistence of positive and negative ionospheric storm during geomagnetic storms and prestorm phenomena on low and low-mid latitude ionospheric F2, Book of Proc. of 5th Annual Conf. of the Nigeria Union of Radio Science (NURS) an Affiliate of International Union of Radio Science Nigeria (URSI), 2013, pp. 15–28.

  8. Araujo-Pradere, E.A. and Fuller-Rowell, T.J., STORM: An empirical storm-time ionospheric correction model. 2. Validation, Radio Sci., 2002, vol. 37, no. 5, p. 1071. https://doi.org/10.1029/2002RS002620

    Article  Google Scholar 

  9. Bakare, N.O. and Chukwuma, V.U., Storm time variation of positive and negative ionospheric effect during the intense geomagnetic storm, Indian J. Radio Space, 2010, vol. 39, pp. 150–155.

    Google Scholar 

  10. Berényi, K.A., Barta, V., and Kis, Á., Midlatitude ionospheric F2-layer response to eruptive solar events-caused geomagnetic disturbances over Hungary during the maximum of the solar cycle 24: A case study, Adv. Space Res., 2018, vol. 61, no. 5, pp. 1230–1243.

    Article  Google Scholar 

  11. Blagoveshchensky, D., Kosmicheskaya pogoda i ionosfernye radiovolny (Space Weather and Ionospheric Radio Waves), Saarbrucken: Palmarium Academic Publishing, 2012.

  12. Blagoveshchensky, D.V., Variations in the critical frequency of the ionospheric F-region during magnetic storms in 2008–2012 at auroral latitudes, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 568–574.

  13. Blagoveshchensky, D.V. and Kalishin, A.S., Increase in the critical frequency of the ionospheric F region prior to the substorm expansion phase, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 2, pp. 200–209.

  14. Blagoveshchensky, D.V. and Sergeeva, M.A., Impact of geomagnetic storm of September 7–8, 2017 on ionosphere and HF propagation: A multi-instrument study, Adv. Space Res., 2019, vol. 63, pp. 239–256.

    Article  Google Scholar 

  15. Blagoveshchensky, D.V., Maltseva, O.A., and Rodger, A.S., Ionosphere dynamics over Europe and western Asia during magnetospheric substorms 1998–1999, Ann. Geophys., 2003, vol. 21, no. 5, pp. 1141–1151.

    Article  Google Scholar 

  16. Blagoveshchensky, D.V., Sergeeva, M.A., and Kozlovsky, A., Ionospheric parameters as the precursors of disturbed geomagnetic conditions, Adv. Space Res., 2017, vol. 60, no. 11, pp. 2437–2451.

    Article  Google Scholar 

  17. Buonsanto, M.J., Ionospheric storms—A review, Space Sci. Rev., 1999, vol. 88, pp. 563–601.

    Article  Google Scholar 

  18. Buresova, D. and Laštovička, J., Pre-storm enhancements of foF2 above Europe, Adv. Space Res., 2007, vol. 39, pp. 1298–1303.

    Article  Google Scholar 

  19. Buresova, D. and Laštovička, J., Pre-storm electron density enhancements at middle latitudes, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70. https://doi.org/10.1016/j.jastp.2008.01.014

  20. Buresova, D., Laštovička, J., Hejda, P., and Bochníček, J., Ionospheric disturbances under low solar activity conditions, Adv. Space Res., 2014, vol. 54, no. 2, pp. 185–196.

    Article  Google Scholar 

  21. Danilov, A.D., F2-region response to geomagnetic disturbances, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, pp. 441–449.

    Article  Google Scholar 

  22. Danilov, A.D., F region response to geomagnetic disturbances (review), Geliogeofiz. Issled., 2013a, no. 5, pp. 1–33.

  23. Danilov, A., Ionospheric F2-region response to geomagnetic disturbances, Adv. Space Res., 2013b, vol. 52, pp. 343–366.

    Article  Google Scholar 

  24. Danilov, A.D. and Belik, L.D., Thermosphere–ionosphere interaction during geomagnetic storms, Geomagn. Aeron., 1991, vol. 31, no. 2, pp. 209–222.

    Google Scholar 

  25. Danilov, A.D. and Belik, L.D., Thermospheric composition and the positive phase of an ionospheric storm, Adv. Space Res., 1992, vol. 12, no. 10, pp. 257–260.

    Article  Google Scholar 

  26. Danilov, A.D. and Laštovička, J., Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeron., 2001, vol. 2, pp. 209–224.

    Google Scholar 

  27. Galav, P., Rao, S.S., Sharma, S., Gordiyenko, G., and Pandey, R., Ionospheric response to the geomagnetic storm of 15 May 2005 over midlatitudes in the day and night sectors simultaneously, J. Geophys. Res.: Space, 2014, vol. 119, pp. 5020–5031. https://doi.org/10.1002/2013JA019679

    Article  Google Scholar 

  28. Ghodpage, R.N., Patil, P.T., Gurav, O.B., Gurubaran, S., and Sharma, A.K., Ionospheric response to major storm of 17th March 2015 using multi-instrument data over low latitude station Kolhapur (16.8° N, 74.2° E, 10.6° dip. lat.), Adv. Space Res., 2018, vol. 62, no. 3, pp. 624–637.

    Article  Google Scholar 

  29. Grandin, M., Aikio, A.T., Kozlovsky, A., Ulich, T., and Raita, T., Effects of solar wind high-speed streams on the high-latitude ionosphere: superposed epoch study, J. Geophys. Res.: Space, 2015, vol. 120, pp. 10669–10687. https://doi.org/10.1002/2015JA021785

    Article  Google Scholar 

  30. Kane, R.P., Storm-time variations of F2, Ann. Geophys., 1973a, vol. 29, no. 1, pp. 25–42.

    Google Scholar 

  31. Kane, R.P., Global evolution of F2-region storms, J. Atmos. Terr. Phys., 1973b, vol. 35, pp. 1953–1966.

    Article  Google Scholar 

  32. Kane, R.P., Global evolution of the ionospheric electron content during some geomagnetic storms, J. Atmos. Terr. Phys., 1975, vol. 37, pp. 601–611.

    Article  Google Scholar 

  33. Kane, R.P., Ionospheric foF2 anomalies during some intense geomagnetic storms, Ann. Geophys., 2005, vol. 23, no. 7, pp. 2487–2499.

    Article  Google Scholar 

  34. Lei, J., Huang, F., Chen, X., et al., Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian–Australian sector between 7 and 12 September 2017?, J. Geophys. Res.: Space, 2018, vol. 123, no. 4, pp. 3217–3232. https://doi.org/10.1029/2017JA025166

    Article  Google Scholar 

  35. Liu, L., Wan, W., Zhang, M.-L., and Zhao, B., Case study on total electron content enhancements at low latitudes during low geomagnetic activities before the storms, Ann. Geophys., 2008a, vol. 26, no. 4, pp. 893–903.

    Article  Google Scholar 

  36. Liu, L., Wan, W., Zhang, M-L., Zhao, B., and Ning, B., Pre-storm enhancements in NmF2 and total electron content at low latitudes, J. Geophys. Res.: Space, 2008b, vol. 113, no. A2. https://doi.org/10.1029/2007JA012832

  37. Liu, J., Liu, L., Nakamura, T., Zhao, B., Ning, B., and Yoshikawa, A., A case study of ionospheric storm effects during long-lasting southward IMF Bz-driven geomagnetic storm, J. Geophys. Res.: Space, 2014, vol. 119, pp. 7716–7731. https://doi.org/10.1002/2014JA020273

    Article  Google Scholar 

  38. Mahrous, A., Global ionospheric response to the magnetic storm of 21 October 1999, Aust. J. Basic Appl. Sci., 2007, vol. 1, no. 4, pp. 678–686.

    Google Scholar 

  39. Mandrikova, O.V., Fetisova, N.V., Polozov, Y.A., Solovev, I.S., and Kupriyanov, M.S., Method for modeling of the components of ionospheric parameter time variations and detection of anomalies in the ionosphere, Earth Planets Space, 2015, vol. 67, id 131. https://doi.org/10.1186/s40623-015-0301-4

  40. Mandrikova, O., Polozov, Yu., Fetisova, N., and Zalyaev, T., Analysis of the dynamics of ionospheric parameters during periods of increased solar activity and magnetic storms, J. Atmos. Sol.-Terr. Phys., 2018, vol. 181, pp. 116–126.

    Article  Google Scholar 

  41. Mansilla, G.A., Ionospheric effects of an intense geomagnetic storm, Stud. Geophys. Geod., 2007, vol. 51, no. 4, pp. 563–574.

    Article  Google Scholar 

  42. Mansilla, G.A., Some ionospheric storm effects at equatorial and low latitudes, Adv. Space Res., 2014, vol. 53, pp. 1329–1336.

    Article  Google Scholar 

  43. Mansilla, G.A. and Zossi, M.M., Ionospheric response to the 3 August 2010 geomagnetic storm at mid and mid-high latitudes, Adv. Space Res., 2012, vol. 51, no. 1, pp. 50–60.

    Article  Google Scholar 

  44. Mansilla, G.A. and Zossi, M.M., Some ionospheric storm effects at an Antarctic station, Adv. Space Res., 2016, vol. 57, pp. 1319–1327.

    Article  Google Scholar 

  45. Mikhailov, A.V. and Perrone, L., Pre-storm NmF2 enhancements at mid latitudes: Delusion or reality?, Ann. Geophys., 2009, vol. 27, no. 3, pp. 1321–1330.

    Article  Google Scholar 

  46. Nogueira, P.A.B., Abdu, M.A., Batista, I.S., and de Siqueira, P.M., Equatorial ionization anomaly and the atmospheric meridional winds during two major storms over Brazilian low latitudes, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, pp. 1535–1543.

    Article  Google Scholar 

  47. Patowary, R., Singh, S.B., and Bhuyan, K., Latitudinal variation of F2-region response to geomagnetic disturbance, Adv. Space Res., 2013, vol. 52, pp. 367–374.

    Article  Google Scholar 

  48. Polekh, N., Zolotukhina, N., Kurkin, V., et al., Dynamics of ionospheric disturbances during the 17–19 March 2015 geomagnetic storm over East Asia, Adv. Space Res., 2017, vol. 60, no. 11, pp. 2464–2476.

    Article  Google Scholar 

  49. Prölls, G., Ionospheric F-region storms, Handbook of Atmospheric Electrodynamics, vol. 2, Volland, H., Ed., Boca Raton: CRC, 1995, pp. 195–248.

    Google Scholar 

  50. Rees, D., Observations and modeling of ionospheric and thermospheric disturbances during major geomagnetic storms: A review, J. Atmos. Terr. Phys., 1995, vol. 57, no. 12, pp. 1433–1457.

    Article  Google Scholar 

  51. Saranya, P.L., Venkatesh, K., Prasad, D.S.V.V., Rama, Rao P.V.S., and Niranjan, K., Pre-storm behavior of NmF2 and TEC (GPS) over equatorial and low latitude stations in the Indian sector, Adv. Space Res., 2011, vol. 48, no. 2, pp. 207–217.

    Article  Google Scholar 

  52. Shimeis, A., Borries, C., Amory-Mazaudier, C., et al., TEC variations along an East Euro African chain during 5th April 2010 geomagnetic storm, Adv. Space Res., 2015, vol. 55, pp. 2239–2247.

    Article  Google Scholar 

  53. Yizengaw, E., Essex, E.A., and Birsa, R., The southern hemisphere and equatorial region ionization response for a 22 September 1999 severe magnetic storm, Ann. Geophys., 2004, vol. 22, no. 8, pp. 2765–2773.

    Article  Google Scholar 

  54. Zolotukhina, N., Polekh, N., Kurkin, V., et al., Ionospheric effects of St. Patrick’s storm over Asian Russia: 17–19 March 2015, J. Geophys. Res.: Space, 2017, vol. 122, pp. 2484–2504. https://doi.org/10.1002/2016JA023180

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-05-80 023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Danilov or A. V. Konstantinova.

Additional information

Translated by A. Danilov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, A.D., Konstantinova, A.V. Ionospheric Precursors of Geomagnetic Storms. 1. A Review of the Problem. Geomagn. Aeron. 59, 554–566 (2019). https://doi.org/10.1134/S0016793219050025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219050025

Navigation